首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   23篇
  国内免费   11篇
电工技术   10篇
综合类   6篇
化学工业   80篇
金属工艺   11篇
机械仪表   26篇
建筑科学   15篇
能源动力   17篇
轻工业   28篇
水利工程   7篇
石油天然气   14篇
无线电   49篇
一般工业技术   72篇
冶金工业   19篇
原子能技术   3篇
自动化技术   92篇
  2023年   10篇
  2022年   12篇
  2021年   23篇
  2020年   16篇
  2019年   24篇
  2018年   35篇
  2017年   35篇
  2016年   30篇
  2015年   12篇
  2014年   17篇
  2013年   44篇
  2012年   37篇
  2011年   37篇
  2010年   35篇
  2009年   22篇
  2008年   13篇
  2007年   15篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   5篇
排序方式: 共有449条查询结果,搜索用时 31 毫秒
1.
2.
Well-ordered and surface engineered hierarchical hydroxyapatite microspheres (HAM) were prepared via a template free hydrothermal process. Ethylene diamine tetra (methylene phosphonic acid) (EDTMP) was used as chelating or regulating agent for the first time in this study. The results indicated the formation of sheet-like particles in the absence of EDTMP. On the other hand, microspheres with radially grown nanorods (HAMNR) or nanosheets (HAMNS) on the surface were obtained (with average diameter of 5?µm) in the presence of EDTMP. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the crystalline phases in the synthesized samples. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that EDTMP concentration played an important part in regulating the morphology to form well organized microspheres with nanosheets or nanorods on the surface. Brunauer-Emmett-Teller (BET) revealed an increase in the specific surface area with the change in morphology from the HAMNS to HAMNR. Possible mechanisms are proposed to account for the formation of different morphologies based upon thermodynamic and kinetic theories.  相似文献   
3.
Metallurgical and Materials Transactions B - The calcination and the reduction behaviors of a low-grade manganese ore by methane was studied at 973 K to 1273 K by several techniques. The onset...  相似文献   
4.
CoAl2O4 spinel was successfully synthesized by combustion synthesis method using glycine and urea by 1:1 molar ratio as fuels and sol-gel process using citric acid as a chelating agent. The as-synthesized powders were calcined at desired temperatures to obtain CoAl2O4 spinel as a single phase. X-ray diffraction, thermogravimetric, and differential thermal analysis results revealed that the formation of CoAl2O4 spinel in combustion method needs 300°C higher temperatures than those of sol-gel. Scanning electron microscopy and transmission electron microscopy analysis results revealed that “sol-gel spinel” had nanometric particle size which was smaller than those of “combustion spinel.” Temperature programed reduction with hydrogen and Fourier transform infrared spectroscopy results declared that there was a little residual cobalt oxide in combustion spinel while there is no oxide resided in “sol-gel spinel.” Consequently, the sol-gel method has more benefit in synthesizing spinel with sulfate precursors than combustion.  相似文献   
5.
Knowledge and Information Systems - The standard machine learning tasks often assume that the training (source domain) and test (target domain) data follow the same distribution and feature space....  相似文献   
6.
The most commonly discussed topic at the present time is the fluid flow in a channel having a porous area, as it is of practical importance for petroleum extraction, frequently isolated irrigation, coolant circulation, biofluid transportation in living organisms, and industrial cleaning systems. An investigation of heat transfer characteristics of unsteady magnetohydrodynamics oscillatory two-immiscible fluid flow of Casson fluid (CF) and ferrofluid (FF) in a long-infinite horizontal composite channel is performed analytically. The channel is divided into two regions. Region I is occupied by a porous region with CF, while Region II is a clear region filled with FF. The mathematical system of coupled partial differential equations is solved analytically considering the two-term periodic and nonperiodic functions. The influences of physical parameters such as CF parameter, porosity parameter, nanoparticles volume fraction, Hartmann number, periodic frequency parameter, oscillations amplitude, and pressure on momentum as well as heat transfer are presented through graphical illustrations (two-dimensional along with three-dimensional) and in tabular form using the MATHEMATICA program. Four different shaped nano-size ferroparticles are used in this study. The investigation of four different nanosized ferroparticles exhibits that the momentum transfer is higher when brick-shaped nanosized ferroparticles are added to the base fluid, water. It is also observed that thermal performance enhances in the case of brick-shaped nanosized ferroparticles compared to the blade, cylinder, and platelet-shaped nanosized ferroparticles. It is observed that the dispersion of brick-shaped nanosized ferroparticles is recommended in base fluid water for greater thermal performance through a horizontal channel.  相似文献   
7.
8.
The corrosion behavior of a tin IV oxide-doped AZS-refractory, subject to static and dynamic corrosion testing at 1370˚C in soda-lime-silica glass, was studied considering the effect of the microstructural features on corrosion. The refractory was synthesized by slip cast methods through reaction sintering of alumina and zircon raw materials using SnO2 as a sintering agent. SnO2 had a considerable influence in the enhanced alumina/zircon reaction sintering and the subsequently evolved microstructures of an interlocked Zr(1-x)Sn(x)O2 solid solution reinforced alumina-mullite composite. The process kinetics of the refractory corrosion followed reasonably well the predicted dependence on the square root of angular velocity under forced convection corrosion. Glass chemical corrosion and erosion of the refractory, under static and dynamic glass conditions, respectively, revealed the Zr(1-x)Sn(x)O2 solid solution-rich mullite matrix as providing the most corrosion resistance and glass compatibility.  相似文献   
9.
Boron (B) is the most problematic impurity to be removed in the processes applied for the production of solar grade silicon. Boron removal from liquid silicon by sodium-silicate slags is experimentally studied and it is indicated that B can be rapidly removed within short reaction times. The B removal rate is higher at higher temperatures and higher Na2O concentrations in the slag. Based on the experimental results and thermodynamic calculations, it is proposed that B removal from silicon phase takes place through its oxidation at the slag/Si interfacial area by Na2O and that the oxidized B is further gasified from the slag through the formation of sodium metaborate (Na2B2O4) at the slag/gas interfacial area. The overall rate of B removal is mainly controlled by these two chemical reactions. However, it is further proposed that the B removal rate from silicon depends on the mass transport of Na in the system. Sodium is transferred from slag to the molten silicon through the silicothermic reduction of Na2O at the slag/Si interface and it simultaneously evaporates at the Si/gas interfacial area. This causes a Na concentration rise in silicon and its further decline after reaching a maximum. A major part of the Na loss from the slag is due to its carbothermic reduction and formation of Na gas.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号