首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37157篇
  免费   14872篇
  国内免费   5篇
电工技术   722篇
综合类   3篇
化学工业   16131篇
金属工艺   372篇
机械仪表   723篇
建筑科学   1563篇
矿业工程   27篇
能源动力   827篇
轻工业   7070篇
水利工程   296篇
石油天然气   44篇
无线电   6953篇
一般工业技术   11356篇
冶金工业   1425篇
原子能技术   39篇
自动化技术   4483篇
  2023年   19篇
  2021年   247篇
  2020年   1449篇
  2019年   3201篇
  2018年   3130篇
  2017年   3455篇
  2016年   3906篇
  2015年   3973篇
  2014年   3902篇
  2013年   5058篇
  2012年   2740篇
  2011年   2401篇
  2010年   2681篇
  2009年   2561篇
  2008年   2110篇
  2007年   1936篇
  2006年   1726篇
  2005年   1417篇
  2004年   1333篇
  2003年   1235篇
  2002年   864篇
  2001年   590篇
  2000年   277篇
  1999年   114篇
  1998年   284篇
  1997年   205篇
  1996年   146篇
  1995年   88篇
  1994年   98篇
  1993年   87篇
  1992年   53篇
  1991年   42篇
  1990年   43篇
  1989年   55篇
  1988年   39篇
  1987年   32篇
  1986年   37篇
  1985年   29篇
  1984年   25篇
  1983年   22篇
  1982年   16篇
  1981年   24篇
  1980年   17篇
  1979年   21篇
  1978年   30篇
  1977年   32篇
  1976年   64篇
  1975年   28篇
  1974年   18篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Journal of Applied Electrochemistry - Large area MoS2 ultra-thin film deposition is one of the big challenges in the recent years. Electrodeposition provides an opportunity to grow such ultra-thin...  相似文献   
2.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
3.
Phosphate ester was investigated as a corrosion inhibitor for AISI 1018 carbon steel in carbon dioxide-saturated chloride solutions at different temperatures and pressures. The corrosion tests were realized by electrochemical techniques, weight loss measurements, bubble tests, and a high-pressure/high-temperature autoclave system. The corrosion tests demonstrated that the investigated molecule is an excellent corrosion inhibitor. The inhibiting effect is even bigger at high pressure and temperature than at atmospheric pressure and room temperature. The thermodynamic parameters were calculated and determined to obey the Langmuir isotherm. Polarization studies revealed that the evaluated inhibitor is a mixed type.  相似文献   
4.
Doped transparent ceramics with high optical quality can serve as materials for photonic applications such as laser gain media. In that regard, transparent polycrystalline alumina has potential for high-power applications due to its excellent physical and chemical properties, combined with unique doping possibilities. However, optical birefringence of Al2O3 crystals make achieving sufficiently high optical transmittance a processing challenge. In the present study, we demonstrated fabrication of highly transparent 0.5 at.% Cr:Al2O3 ceramics by high-pressure spark plasma sintering (HPSPS). The optical properties of these polycrystalline ruby ceramics were analyzed in order to assess possible laser operation (at 694.3 nm). The obtained ceramics exhibit high in-line transmittance (~72.5 % at 700 nm), equivalent to a scattering coefficient of 2.15 cm?1, and characteristic ruby photoluminescence. The theoretically estimated lasing threshold and percentage of absorbed pump power indicate that such ruby ceramic lasers could operate at reasonable thresholds of 80?225 mW with short lengths of 0.5?5 mm. Thus, HPSPS is a promising method for producing laser-quality doped transparent ceramics for compact laser systems.  相似文献   
5.
The retinal ganglion cells (RGC) may be considered an easily accessible pathophysiological site of degenerative processes in neurological diseases, such as the RGC damage detectable in multiple sclerosis (MS) patients with (HON) and without a history of optic neuritis (NON). We aimed to assess and interrelate RGC functional and structural damage in different retinal layers and retinal sites. We included 12 NON patients, 11 HON patients and 14 healthy controls for cross-sectional multifocal pattern electroretinography (mfPERG) and optical coherence tomography (OCT) measurements. Amplitude and peak times of the mfPERG were assessed. Macula and disc OCT scans were acquired to determine macular retinal layer and peripapillary retinal nerve fiber layer (pRNFL) thickness. In both HON and NON patients the foveal N2 amplitude of the mfPERG was reduced compared to controls. The parafoveal P1 peak time was significantly reduced in HON only. For OCT, parafoveal (pfGCL) and perifoveal (pGCL) ganglion cell layer thicknesses were decreased in HON vs. controls, while pRNFL in the papillomacular bundle sector (PMB) showed reductions in both NON and HON. As the mfPERG derived N2 originates from RGC axons, these findings suggest foveal axonal dysfunction not only in HON, but also in NON patients.  相似文献   
6.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
7.
Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such as Escherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such as Staphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such as S. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry  相似文献   
8.
This article develops practical methods for Bayesian inference in the autoregressive fractionally integrated moving average (ARFIMA) model using the exact likelihood function, any proper prior distribution, and time series that may have thousands of observations. These methods utilize sequentially adaptive Bayesian learning, a sequential Monte Carlo algorithm that can exploit massively parallel desktop computing with graphics processing units (GPUs). The article identifies and solves several problems in the computation of the likelihood function that apparently have not been addressed in the literature. Four applications illustrate the utility of the approach. The most ambitious is an ARFIMA(2,d,2) model for the Campito tree ring time series (length 5405), for which the methods developed in the article provide an essentially uncorrelated sample of size 16,384 from the exact posterior distribution in under four hours. Less ambitious applications take as little as 4 minutes without exploiting GPUs.  相似文献   
9.
The repair of bone fractures is a clinical challenge for patients with impaired healing, such as osteoporosis. Currently, different strategies have been developed to design new biomaterials, enhancing their interactions with biological systems and conducting the cellular behavior in the desired direction to help fracture healing. In the present work, hydroxyapatite-graphene oxide (HA-GO) nanocomposites were produced and the morphological and physicochemical influences of the addition of 0.5 wt%, 1.0 wt% and 1.5 wt% of GO to HA were observed. FEG-SEM and TEM analyses of HA-GO nanocomposites showed HA nanoparticles adhered to the surface of the GO sheets, suggesting an effective method to form nanostructured graphene-based biomaterials. As confirmation, physicochemical analyses by Raman, FTIR and TGA demonstrated a strong affinity between HA and GO, according to the increase of concentration from 0.5 wt% to 1.5 wt% GO in the HA-GO nanocomposites. Also, in order to evaluate the HA-GO nanocomposites behavior under biological microenvironment, in vitro bioactivity and indirect cytotoxicity tests were performed. FEG-SEM analyses confirmed the positive results for the bioactivity properties of HA-GO nanocomposite and indirect cytotoxicity demonstrated that even with a decrease in the hDPSCs viability and proliferation, when increasing to 1.5 wt% of GO concentration, high level of cell viability was exhibited by HA-GO nanocomposites. These biological results suggested the 0.5 wt% HA-GO nanocomposite as a potential bioactive bone graft and a promising biomaterial for bone tissue regeneration, when compared to the pure HA.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号