首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1266篇
  免费   75篇
  国内免费   1篇
电工技术   10篇
化学工业   310篇
金属工艺   9篇
机械仪表   22篇
建筑科学   69篇
矿业工程   2篇
能源动力   25篇
轻工业   195篇
水利工程   13篇
石油天然气   2篇
无线电   50篇
一般工业技术   245篇
冶金工业   209篇
原子能技术   8篇
自动化技术   173篇
  2023年   12篇
  2022年   16篇
  2021年   53篇
  2020年   33篇
  2019年   37篇
  2018年   43篇
  2017年   35篇
  2016年   36篇
  2015年   44篇
  2014年   45篇
  2013年   86篇
  2012年   73篇
  2011年   111篇
  2010年   79篇
  2009年   55篇
  2008年   59篇
  2007年   68篇
  2006年   60篇
  2005年   46篇
  2004年   37篇
  2003年   44篇
  2002年   36篇
  2001年   22篇
  2000年   14篇
  1999年   19篇
  1998年   25篇
  1997年   9篇
  1996年   11篇
  1995年   8篇
  1994年   3篇
  1993年   11篇
  1992年   5篇
  1991年   5篇
  1990年   7篇
  1989年   9篇
  1988年   3篇
  1987年   7篇
  1986年   7篇
  1984年   6篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   9篇
  1972年   3篇
  1970年   3篇
  1969年   2篇
  1961年   2篇
排序方式: 共有1342条查询结果,搜索用时 15 毫秒
1.
The SAFT-γ Mie group-contribution equation of state is used to represent the fluid-phase behavior of aqueous solutions of a variety of linear, branched, and cyclic amines. New group interactions are developed in order to model the mixtures of interest, including the like and unlike interactions between alkyl primary, secondary, and tertiary amine groups (NH2, NH, N), cyclic secondary and tertiary amine groups (cNH, cN), and cyclic methine-amine groups (cCHNH, cCHN) with water (H2O). The group-interaction parameters are estimated from appropriate experimental thermodynamic data for pure amines and selected mixtures. By taking advantage of the group-contribution nature of the method, one can describe the fluid-phase behavior of mixtures of molecules comprising those groups over broad ranges of temperature, pressure, and composition. A number of aqueous solutions of amines are studied including linear, branched aliphatic, and cyclic amines. Liquid–liquid equilibria (LLE) bounded by lower critical solution temperatures (LCSTs) have been reported experimentally and are reproduced here with the SAFT-γ Mie approach. The main feature of the approach is the ability not only to represent accurately the experimental data employed in the parameter estimation, but also to predict the vapor–liquid, liquid–liquid, and vapor–liquid–liquid equilibria, and LCSTs with the same set of parameters. Pure compound and binary phase diagrams of diverse types of amines and their aqueous solutions are assessed in order to demonstrate the main features of the thermodynamic and fluid-phase behavior.  相似文献   
2.
3.
The performance of lead-halide perovskite light-emitting diodes (LEDs) has increased rapidly in recent years. However, most reports feature devices operated at relatively small current densities (<500 mA cm−2) with moderate radiance (<400 W sr−1 m−2). Here, Joule heating and inefficient thermal dissipation are shown to be major obstacles toward high radiance and long lifetime. Several thermal management strategies are proposed in this work, such as doping charge-transport layers, optimizing device geometry, and attaching heat spreaders and sinks. Combining these strategies, high-performance perovskite LEDs are demonstrated with maximum radiance of 2555 W sr−1 m−2, peak external quantum efficiency (EQE) of 17%, considerably reduced EQE roll-off (EQE > 10% to current densities as high as 2000 mA cm−2), and tenfold increase in operational lifetime (when driven at 100 mA cm−2). Furthermore, with proper thermal management, a maximum current density of 2.5 kA cm−2 and an EQE of ≈1% at 1 kA cm−2 are shown using electrical pulses, which represents an important milestone toward electrically driven perovskite lasers.  相似文献   
4.
5.
This work demonstrates the efficiency of almond gum polysaccharides (AGPs) as bioactive compounds. AGPs were first extracted using H2O2, in the presence of NaOH, at different times and temperatures. The optimal extraction conditions were 4% H2O2 and 2 N NaOH, for 7 h at 50 °C, leading to an extraction yield of 58.2% (w/w). After a purification step, the retained AGPs were characterised using high‐performance liquid chromatography showing a molecular weight of 99.3 kDa. The monosaccharide composition of AGPs were assessed using gas chromatography–mass spectrometry. AGPs were found to be a complex heteropolysaccharide with a repeating unit mainly composed of galactose, arabinose, xylose, mannose, rhamnose, and glucuronic acid with the respective ratios: 45:26:7:10:1:11. The acidic nature of the polysaccharide is due to the presence of glucuronic acid. Total antioxidant activity, free radical‐scavenging activity and reducing power assay of AGPs were investigated. The obtained results showed high antioxidant activities of AGPs. Furthermore, beyond 60 mg mL?1, AGPs exhibited bacterial growth inhibition for five pathogenic strains: Escherichia coli, Staphylococcus aureus, Enterococcus feacalis, Pseudomonas aeruginosa and Salmonella typhimurium.  相似文献   
6.
7.
The present study aimed at using plant waste (Musa Paradisiaca) for manufacturing clay-based ceramics in order to promote lower sintering temperature while preserving the properties of use. Two kaolinic-illitic clays (NZ1 and KO) from Central African Republic were used mixed with 1 to 10 mass% of the plant waste (MP). The clays and the waste exhibited accessory phases: quartz and iron oxides, and K2O respectively. MP was collected, dried and sieved (<100 μm) previously to its mixture with clays. According to the sintering behavior of KO and NZ1 derived from thermodilatometry, the densification was obtained after firing at 1200°C. Results showed that open porosity decreased from 35% to 17% with increasing temperature in the range 900 to 1200°C for KO and NZ1. This porosity remained in the range 30%-40% while increasing the MP content (firing at 1000°C for 1h.). The optimized MP content was 3 and 5 mass% for KO and NZ1 clay materials respectively. The compressive strength and thermal conductivities were improved compared to clay samples without MP fired at 1200°C. Moreover a significant decrease in the sintering temperature was achieved, leading to energy saving in line with sustainability issues.  相似文献   
8.
Colloidal lipid particles (CLPs) are promising encapsulation systems for lipophilic bioactives, such as oil‐soluble antioxidants that are applied in food and pharmaceutical formulations. Currently, there is no clear consensus regarding the relation between particle structure and the chemical stability of such bioactives. Using α‐tocopherol as a model antioxidant, it is shown that emulsifier type (Tween 20 or 40, or sodium caseinate) and lipid composition (tripalmitin, tricaprylin, or combinations thereof) modulated particle morphology and antioxidant stability. The emulsifier affects particle shape, with the polysorbates facilitating tripalmitin crystallization into highly ordered lath‐like particles, and sodium caseinate resulting in less ordered spherical particles. The fastest degradation of α‐tocopherol is observed in tripalmitin‐based CLPs, which may be attributed to its expulsion to the particle surface induced by lipid crystallization. This effect is stronger in CLPs stabilized by Tween 40, which may act as a template for crystallization. This work not only shows how the architecture of CLPs can be controlled through the type of lipid and emulsifier used, but also gives evidence that lipid crystallization does not necessarily protect entrapped lipophilic bioactives, which is an important clue for encapsulation system design. Practical Applications: Interest in enriching food and pharmaceutical products with lipophilic bioactives such as antioxidants through encapsulation in lipid particles is growing rapidly. This research suggests that for efficient encapsulation, the particle architecture plays an important role; to tailor this, the contribution of both the lipid carrier and the emulsifier needs to be considered.  相似文献   
9.
Primary ciliary dyskinesia (PCD) is a rare disease with autosomal recessive inheritance, caused mostly by bi-allelic gene mutations that impair motile cilia structure and function. Currently, there are no causal treatments for PCD. In many disease models, translational readthrough of premature termination codons (PTC-readthrough) induced by aminoglycosides has been proposed as an effective way of restoring functional protein expression and reducing disease symptoms. However, variable outcomes of pre-clinical trials and toxicity associated with long-term use of aminoglycosides prompt the search for other compounds that might overcome these problems. Because a high proportion of PCD-causing variants are nonsense mutations, readthrough therapies are an attractive option. We tested a group of chemical compounds with known PTC-readthrough potential (ataluren, azithromycin, tylosin, amlexanox, and the experimental compound TC007), collectively referred to as non-aminoglycosides (NAGs). We investigated their PTC-readthrough efficiency in six PTC mutations found in Polish PCD patients, in the context of cell and cilia health, and in comparison to the previously tested aminoglycosides. The NAGs did not compromise the viability of the primary nasal respiratory epithelial cells, and the ciliary beat frequency was retained, similar to what was observed for gentamicin. In HEK293 cells transfected with six PTC-containing inserts, the tested compounds stimulated PTC-readthrough but with lower efficiency than aminoglycosides. The study allowed us to select compounds with minimal negative impact on cell viability and function but still the potential to induce PTC-readthrough.  相似文献   
10.
This work focuses on the assessment of the erosion properties and antifouling (AF) performance of silyl ester copolymer-based coatings through laboratory and field tests. Silyl ester diblock copolymers were synthesized via the reversible addition-fragmentation chain transfer polymerization and were selected as binders for developing copper-free chemically active coatings. AF coatings were subsequently prepared using biocides (Sea-Nine™ 211, Preventol® A4S, and zinc pyrithione). Laboratory-based bioassays, targeting the growth of selected microorganisms (bacteria and microalgae) and barnacle settlement, highlighted that the silyl ester methacrylic-based binders did not inhibit the growth of microorganisms, are essentially non-toxic to nauplii and reduced the settlement of Amphibalanus amphitrite cyprids. The corresponding biocidal coatings are potent toward bacteria and diatoms but were demonstrated to be toxic against the barnacle larvae. Field test results showed variations with geographical locations: in sub-tropical area, the silyl ester methacrylic-based coatings failed to inhibit the settlement of barnacles; however, field tests performed in Mediterranean Sea for 18 months demonstrated that biocidal silyl ester methacrylic-based coatings were promising candidates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号