首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   40篇
  国内免费   5篇
电工技术   6篇
综合类   1篇
化学工业   84篇
金属工艺   7篇
机械仪表   14篇
建筑科学   25篇
矿业工程   2篇
能源动力   49篇
轻工业   55篇
水利工程   5篇
石油天然气   1篇
无线电   54篇
一般工业技术   131篇
冶金工业   14篇
原子能技术   7篇
自动化技术   80篇
  2023年   7篇
  2022年   24篇
  2021年   61篇
  2020年   42篇
  2019年   48篇
  2018年   31篇
  2017年   26篇
  2016年   29篇
  2015年   17篇
  2014年   19篇
  2013年   44篇
  2012年   27篇
  2011年   25篇
  2010年   18篇
  2009年   17篇
  2008年   23篇
  2007年   12篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   7篇
  2001年   14篇
  1999年   1篇
  1998年   1篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1974年   1篇
排序方式: 共有535条查询结果,搜索用时 187 毫秒
1.
Emerge in technology brought well-organized manufacturing systems to produce high-quality items. Therefore, monitoring and control of products have become a challenging task for quality inspectors. From these highly efficient processes, produced items are mostly zero-defect and modeled based on zero-inflated distributions. The zero-inflated Poisson (ZIP) and zero-inflated Negative Binomial (ZINB) distributions are the most common distributions, used to model the high-yield and rare health-related processes. Therefore, data-based control charts under ZIP and ZINB distributions (i.e., Y-ZIP and Y-ZINB) are proposed for the monitoring of high-quality processes. Usually, with the defect counts, few covariates are also measured in the process, and the generalized linear model based on the ZIP and ZINB distributions are used to estimate their parameters. In this study, we have designed monitoring structures (i.e., PR-ZIP and PR-ZINB) based on the ZIP and ZINB regression models which will provide the monitoring of defect counts by accounting the single covariate. Further, proposed model-based charts are compared with the existing data-based charts. The simulation study is designed to access the performance of monitoring methods in terms of run length properties and a case study on the number of flight delays between Atlanta and Orlando during 2012–2014 is also provided to highlight the importance of the stated research.  相似文献   
2.
Telecommunication Systems - This paper proposes two algorithms for hybrid (Analog–Digital) beamforming in a single-user millimeter-wave (mm-wave) multi-input multi-output (MIMO) systems under...  相似文献   
3.
The development of materials in two-dimensions has been established as an effective approach to improve their thermoelectric performance for renewable energy production. In this article, we generated monolayers of the orthorhombic structured lead-chalcogenides PbX (X = S, Se, and Te) for room-temperature thermoelectric applications. The Density functional theory and semiclassical Boltzmann transport theory-based computational approaches have been adopted to carry out this study. The band structures of PbX monolayers exhibited narrow indirect bandgaps with a large density of states corresponding to their bandgap edges. Accordingly, substantial electrical conductivities and Seebeck coefficients have been obtained at moderate level doping that has caused significant thermoelectric power factors (PFs) and figures-of-merit (zT) ~1. The single-layered PbX showed anisotropic dispersion of electronic states in the band structure. A relatively lighter effective mass of charge carriers has been extrapolated from the bands oriented in the y-direction than that of the x-direction. As a result, the electrical conductivities and PFs have been observed larger in the y-direction. The optimum PFs recorded for single-layered PbS, PbSe, and PbTe in y-direction amounts to 9.90 × 1010 W/mK2s at 1.0 eV, 10.40 × 1010 W/mK2s at 0.82 eV, and 10.80 × 1010 W/mK2s 0.66 eV respectively. Moreover, a slight increase in p-type doping is found to improve the x-component of the PF, whereas n-type doping has led to improvement in the y-component of PF. Our results show an improved thermoelectric response of PbX monolayer (PbTe in particular) than their bulk counterparts reported in the literature, which indicates the promise of PbX monolayers for nanoscale thermoelectric applications at room temperature.  相似文献   
4.
Abstract

Coal is an important component in the energy industry and plays a key role in energy-producing facilities. Moisture is a common condition that has a considerable impact on coal. Coal drying has long been a question of great interest in a wide range of fields. Defining parameters in the coal drying is obtained by experiments. High costs, time constraints, and repetition of an experiment are one of the most frequently stated problems with experimental works. Using qualitative methods with experiments can be more useful for identifying and characterizing the coal drying process. The purpose of this article is finding the effective parameters in the coal drying process by using a hybridized prediction method. Genetic Algorithm (GA) and Artificial Neural Network (ANN) are hybridized with each other to identify and characterize the coal drying process. GA-ANN algorithm is applied to the coal drying process to predict the moisture of coal, but it does not provide a decent result at first. Later, the Design of Experiment (DoE) methodology is performed to determine the main effects of six parameters. Two scenarios are generated because two parameters are not statistically significant. The first scenario excludes the air relative humidity parameter, and the second scenario excludes the air relative humidity and the velocity of air parameters. Following the application of the DoE method, GA-ANN reaches decent results in scenario-2.  相似文献   
5.
6.
7.
In recent building practice, rapid construction is one of the principal requisites. Furthermore, in designing concrete structures, compressive strength is the most significant of all parameters. While 3-d and 7-d compressive strength reflects the strengths at early phases, the ultimate strength is paramount. An effort has been made in this study to develop mathematical models for predicting compressive strength of concrete incorporating ethylene vinyl acetate (EVA) at the later phases. Kolmogorov-Smirnov (KS) goodness-of-fit test was used to examine distribution of the data. The compressive strength of EVA-modified concrete was studied by incorporating various concentrations of EVA as an admixture and by testing at ages of 28, 56, 90, 120, 210, and 365 d. An accelerated compressive strength at 3.5 hours was considered as a reference strength on the basis of which all the specified strengths were predicted by means of linear regression fit. Based on the results of KS goodness-of-fit test, it was concluded that KS test statistics value (D) in each case was lower than the critical value 0.521 for a significance level of 0.05, which demonstrated that the data was normally distributed. Based on the results of compressive strength test, it was concluded that the strength of EVA-modified specimens increased at all ages and the optimum dosage of EVA was achieved at 16% concentration. Furthermore, it was concluded that predicted compressive strength values lies within a 6% difference from the actual strength values for all the mixes, which indicates the practicability of the regression equations. This research work may help in understanding the role of EVA as a viable material in polymer-based cement composites.  相似文献   
8.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   
9.
Journal of Materials Science: Materials in Electronics - A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple...  相似文献   
10.
Journal of Superconductivity and Novel Magnetism - Silver-substituted Fe–Ni nano invar alloy is a new and innovative field of research due to their interesting invar, magnetic and electrical...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号