首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23489篇
  免费   1960篇
  国内免费   849篇
电工技术   1139篇
技术理论   5篇
综合类   1328篇
化学工业   4142篇
金属工艺   1592篇
机械仪表   1440篇
建筑科学   1766篇
矿业工程   671篇
能源动力   773篇
轻工业   1565篇
水利工程   365篇
石油天然气   1615篇
武器工业   150篇
无线电   2400篇
一般工业技术   2959篇
冶金工业   1320篇
原子能技术   251篇
自动化技术   2817篇
  2024年   50篇
  2023年   446篇
  2022年   568篇
  2021年   953篇
  2020年   803篇
  2019年   671篇
  2018年   782篇
  2017年   797篇
  2016年   695篇
  2015年   950篇
  2014年   1136篇
  2013年   1539篇
  2012年   1493篇
  2011年   1567篇
  2010年   1375篇
  2009年   1311篇
  2008年   1255篇
  2007年   1214篇
  2006年   1288篇
  2005年   1113篇
  2004年   681篇
  2003年   632篇
  2002年   578篇
  2001年   464篇
  2000年   527篇
  1999年   634篇
  1998年   536篇
  1997年   403篇
  1996年   392篇
  1995年   328篇
  1994年   270篇
  1993年   187篇
  1992年   147篇
  1991年   106篇
  1990年   87篇
  1989年   48篇
  1988年   62篇
  1987年   39篇
  1986年   23篇
  1985年   30篇
  1984年   25篇
  1983年   16篇
  1982年   12篇
  1981年   9篇
  1980年   13篇
  1979年   9篇
  1978年   4篇
  1974年   3篇
  1959年   2篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
2.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
3.
Plant fiber reinforced polymer composites (PFRPs) in practical application are often subjected to both complex friction and variable temperature environments. The present work explores the possibility of reinforcing rice husk/polyvinyl chloride (RH/PVC) composites with basalt fibers (BF) for developing a new wear resistant material with improved thermal stability. The results showed that the structural strength and wear resistance of the composites increased at first and then decreased with an increasing ratio of BF/RH, the highest value occurred at a BF/RH ratio of 8/42. The thermal stability of composites had a positive relationship with BF/RH ratio. The composites added with BF all possessed improved performance in comparison with unadded composites. Hence, the findings of this article proposed some new perspectives on improving the wear resistance and thermal stability of PFRPs that would broaden their practical application.  相似文献   
4.
Non-precious metal-based catalysts for oxygen evolution reaction (OER) have been extensively studied, among which the transition metal X-ides (including phosph-ides, sulf-ides, nitr-ides, and carb-ides) materials are emerging as promising candidates to replace the benchmark Ir/Ru-based materials in alkaline media. However, it is controversial whether the metal Xides host the real active sites since these metal Xides are thermodynamically unstable under a harsh OER environment—it has been reported that the initial metal Xides can be electrochemically oxidized and transformed into corresponding oxides and (oxy)hydroxides. Therefore, the metal Xides are argued as “pre-catalysts”; the electrochemically formed oxides and (oxy)hydroxides are believed as the real active moieties for OER. Herein, the recent advances in understanding the transformation behavior of metal Xides during OER are re-looked; importantly, hypotheses are provided to understand why the electrochemically formed oxides and (oxy)hydroxides catalysts derived from metal Xides are superior for OER to the as-prepared metal oxides and (oxy)hydroxides catalysts.  相似文献   
5.
Palladium-based catalysts have been widely employed in the electro-Fenton process for in situ generation of H2O2. However, the process is still far from being practical on a large scale. In this work, a series of ClxFePd/γ-Al2O3/Al catalysts were prepared by a three-step-impregnation method. They exhibited excellent activity in H2O2 in situ synthesis and high efficiency in phenol degradation. The characterization results showed that Cl could assist in increasing the content of Pd0 and reducing the isoelectric point of catalysts, which led to the drastic promotion in the synthesis of H2O2. Theoretical calculations further demonstrated that Cl doping could facilitate the main reaction in H2O2 synthesis, as well as inhibit side reactions such as dissociation of the O O bond. Furthermore, kinetic models were proposed and fitted. A plausible reaction mechanism as well as degradation pathways were elaborated based on electron spin resonance and gas chromatography–mass spectrometry results. These findings illustrate the value of palladium-based ClxFePd/γ-Al2O3/Al catalysts for their application in the electro-Fenton process.  相似文献   
6.
7.
8.
9.
The isothermal adsorption curves for water vapor on montmorillonite were measured by a gravimetric adsorption system. Dent's model was employed to estimate the adsorption behaviors of water vapor on primary adsorption sites and secondary adsorption sites. The thermodynamics analysis of water vapor adsorption was performed. At low vapor pressure region, primary adsorption predominates, and with increasing vapor pressure, secondary adsorption becomes notable. Primary adsorption sites have an evidently stronger adsorption affinity than secondary adsorption sites. With increasing vapor pressure, Gibbs free energy variation rapidly increases and then reduces slowly. Although increasing vapor pressure raises adsorption spontaneity on primary adsorption sites, the enhancement in vapor pressure decreases the spontaneity of water vapor adsorption on secondary adsorption sites. As adsorbed loading increases, isosteric heat of adsorption and entropy loss decrease first and then increase quickly. The gradually growing water clusters are responsible for the increase of entropy loss at late stage.  相似文献   
10.
Wu  Xueling  Zhang  Xiaoxue  Wang  Xiaodong  Zhang  Chen  Zhu  Qiong  Du  Ai  Zhang  Zhihua  Shen  Jun 《Journal of Porous Materials》2022,29(1):87-95
Journal of Porous Materials - Electrode materials with high density for assembling supercapacitors with high volumetric capacitance are urgently needed. Herein, nanoporous carbon xerogels (NPCXs)...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号