首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   48篇
  国内免费   1篇
电工技术   1篇
综合类   2篇
化学工业   161篇
金属工艺   7篇
机械仪表   14篇
建筑科学   58篇
矿业工程   2篇
能源动力   14篇
轻工业   70篇
石油天然气   1篇
无线电   27篇
一般工业技术   107篇
冶金工业   42篇
原子能技术   2篇
自动化技术   61篇
  2023年   10篇
  2022年   5篇
  2021年   30篇
  2020年   17篇
  2019年   14篇
  2018年   11篇
  2017年   13篇
  2016年   32篇
  2015年   28篇
  2014年   22篇
  2013年   44篇
  2012年   39篇
  2011年   26篇
  2010年   41篇
  2009年   26篇
  2008年   32篇
  2007年   38篇
  2006年   26篇
  2005年   23篇
  2004年   12篇
  2003年   12篇
  2002年   10篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1988年   1篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
排序方式: 共有569条查询结果,搜索用时 15 毫秒
1.
2.
Enzyme promiscuity has important implications in the field of biocatalysis. In some cases, structural analogues of simple metabolic building blocks can be processed through entire pathways to give natural product derivatives that are not readily accessible by chemical means. In this study, we explored the plasticity of the aurachin biosynthesis pathway with regard to using fluoro- and chloroanthranilic acids, which are not abundant in the bacterial producers of these quinolone antibiotics. The incorporation rates of the tested precursor molecules disclosed a regiopreference for halogen substitution as well as steric limitations of enzymatic substrate tolerance. Three previously undescribed fluorinated aurachin derivatives were produced in preparative amounts by fermentation and structurally characterized. Furthermore, their antibacterial activities were evaluated in comparison to their natural congener aurachin D.  相似文献   
3.
Malic acid derived from fossil resources is currently applied in the food and beverage industries with a medium global production capacity. However, in the transition from a fossil-based to a bio-based economy, biotechnologically produced l -malic acid may become an important platform chemical with many new applications, especially in the field of biopolymers. In this review, currently used petrochemical production routes to dl -malic acid are outlined and insights into possible bio-based alternatives for microbial l -malic acid production are provided. Besides ecological reasons, the possibility to produce enantiopure l -malic acid by microbial fermentation is the biggest advantage over chemical synthesis. State-of-the-art and open challenges concerning production host engineering, substrate choice and downstream processing are addressed. With regard to production hosts, a literature overview is given covering the leading natural production strains of Aspergillus, Ustilago and Aureobasidium, as well as Escherichia coli as the most important engineered recombinant host. The utilization of renewable substrates as an alternative to glucose is emphasized in particular as a key aspect for a competitive bio-based production. Out of the alternative substrates discussed in this review, the industrial side-streams crude glycerol and molasses seem to be most promising for large-scale l -malic acid production. © 2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   
4.
In this work the influence of thermal treatment conditions on crystallization of a sol-gel-derived 45S5 bioactive glass was evaluated using DSC, XRD, TEM, EDX, and X-ray nanocomputed tomography (nano-CT). Temperature and time of the thermal treatment strongly influence the composition of the crystalline phases. At the onset of the glass transition temperature (600°C), combeite crystallizes as the main phase along with a calcium silicate-phosphate phase, which decomposes into rhenanite from 2 hours of thermal treatment at this temperature. At the crystallization temperature (700°C), combeite remains as the main crystalline phase. Additionally, Na2Ca2Si2O7 crystalline phase is formed. Our results provide a basic platform for tailoring the crystalline phases by controlling the nucleation and growth of crystalline phases via thermal treatments. Different morphologies (round particles, stacked layers, toothpick-like, and long features) were discerned by TEM as a function of temperature and time of treatment. It is the first time that bioactive glass is investigated by nano-CT at laboratory scale. This novel technique enables the 3D visualization of features in the nanometer range, giving clear information about the volumetric distribution of phases in the sample.  相似文献   
5.
The socio-economic and ecological impacts of selected projects of the BMBF funding program “r4 – Innovative Technologies for Resource Efficiency – Research for the Provision of Raw Materials of Strategic Economic Importance” are presented. Many, but not all, research projects indicate a potential improvement of the supply situation in Germany. In some cases, the provision of secondary raw materials is unprofitable or ecologically detrimental. These cases require a balancing between security of supply and other economic and ecological objectives.  相似文献   
6.
One key issue influencing a broader application of Bioglass 45S5 in tissue engineering is its inherent crystallization tendency, severely limiting the mechanical strength of 3D porous scaffolds. Despite numerous studies, Bioglass 45S5 crystallization is not yet fully understood with regard to the mechanisms involved or morphology of the crystal phases forming. Here we show how two cutting-edge imaging techniques, state-of-the-art transmission electron microscopy (TEM) with image correction including energy dispersive X-ray spectroscopy and X-ray nano-computed tomography (nano-CT), allowed us to visualize changes in microstructure from near-nucleation to almost full crystallization in bulk Bioglass 45S5. At early times of heat treatment at 660 °C the formation of phase-separated nano-droplets within the glassy matrix was observed. Later, besides surface crystallization, bulk crystallization of combeite spheres was predominant. The formation of the first combeite spheres, their coarsening with time and finally their merging at near full crystallization were recorded by in situ high-temperature optical microscopy videos. The 3D nature of these spheres was confirmed by nano-CT, while TEM showed that their internal structure was composed of sub-micron grains. X-ray diffraction analysis at early time points showed a much higher crystalline fraction in bulk samples compared to powder samples, highlighting the influence of processing and sample morphology. These results show the importance of using complementary techniques for gaining insight into the crystallization process in the volume. In addition, we show that TEM and nano-CT are suitable characterization techniques to visualize the crystallization even in fast crystallizing systems, such as bioactive glasses.  相似文献   
7.
Understanding rock strength is essential when undertaking major excavation projects,as accurate assessments ensure both safe and cost-effective engineered slopes.Balancing the cost-safety trade-off becomes more imperative during the construction of critical infrastructure such as nuclear power stations,where key components are built within relatively deep excavations.Designing these engineered slopes is reliant on rock strength models,which are generally parameterised using estimates of rock properties(e.g.unconfined compressive strength,rock disturbance) measured prior to the commencement of works.However,the physical process of excavation weakens the remaining rock mass.Therefore,the model also requires an adjustment for the anticipated rock disturbance.In practice,this parameter is difficult to quantify and as a result it is often poorly constrained.This can have a significant impact on the final design and cost of excavation.We present results from passive and active seismic surveys,which image the extent and degree of disturbance within recently excavated slopes at the construction site of Hinkley Point C nuclear power station.Results from active seismic surveys indicate that the disturbance is primarily confined to 0.5 m from the excavated face.In conjunction,passive monitoring is used to detected seismic events corresponding to fracturing on the cm-scale and event locations are in agreement with 0.5 m of disturbance into the rock face.This suggests rock disturbance at this site is relatively low and occurred during and immediately after the excavation.A ratio of seismic velocities recorded before and after excavations are used to determine the disturbance parameter required for the Hoek-Brown rock failure criterion,and we assess that rock disturbance is low with the magnitude of the disturbance diminishing more quickly than expected into the excavated slope.Seismic methods provide a low-cost and quick method to assess excavation related rock mass disturbance,which can lead to cost reductions in large excavation projects.  相似文献   
8.
This paper summarises the levels and composition of chlorobenzenes, chlorinated pesticides, coplanar polychlorinated biphenyls (PCBs) and the chlorinated compounds octachlorostyrene (OCS), hexachlorocyclobutadiene (HCBD) and pentachloro-anisole (PCA) in biota from the terrestrial, freshwater and marine environment of Greenland. The data were obtained during the second phase of the Arctic Monitoring and Assessment Programme (AMAP). Of the chlorobenzenes, hexachlorobenzene was the main constituent detected in almost all samples. The chlorobenzenes accumulate in the marine food web in a similar manner to the better-studied persistent organic pollutants, with maximum concentrations in beluga, minke whale and narwhal. However, concentrations in ringed seals and kittiwakes were lower than in marine fish, contradicting biomagnification. Of the organochlorine pesticides, the drin pesticides (aldrin, endrin, dieldrin) and heptachlor had increasing concentrations along the food chain, whilst biomagnification was less pronounced for endosulfan, methoxychlor and mirex. Endosulfan and methoxychlor are pesticides still in use and considered less persistent than other organochlorine pesticides. Their occurrence in Arctic biota is of particular concern, also given the high acute toxicity of endosulfan to fish. Chlorobenzene and pesticide concentrations tended to be lower in the Greenland samples than in the same animals from the Canadian Arctic, whilst their concentrations were similar to samples from Svalbard and Iceland. However, temporal trends might overlap the geographical differences. Coplanar chlorobiphenyls (CBs) were found in all samples analysed, with the maximum concentrations found in marine mammals such as beluga and narwhal. Biota from the terrestrial environment appeared to be less contaminated. The main contributor on a TEQ basis was CB126. OCS, HCBD and PCA were detected in biota from Greenland, although at very low concentrations. OCS seems to have the widest occurrence and the highest potential for biomagnification of the three compounds analysed.  相似文献   
9.
Efficient removal of phthalate esters (PE) in wastewater treatment plants (WWTP) is becoming an increasing priority in many countries. In this study, we examined the fate of dimethyl phthalate (DMP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), and di-(2-ethylhexyl) phthalate (DEHP) in a full scale activated sludge WWTP with biological removal of nitrogen and phosphorus. The mean concentrations of DMP, DBP, BBP, and DEHP at the WWTP inlet were 1.9, 20.5, 37.9, and 71.9 μg/L, respectively. Less than 0.1%, 42%, 35%, and 96% of DMP, DBP, BBP, and DEHP was associated with suspended solids, respectively. The overall microbial degradation of DMP, DBP, BBP, and DEHP in the WWTP was estimated to be 93%, 91%, 90%, and 81%, respectively. Seven to nine percent of the incoming PE were recovered in the WWTP effluent. Factors affecting microbial degradation of DEHP in activated sludge were studied using [U-14C-ring] DEHP as tracer. First order rate coefficients for aerobic DEHP degradation were 1.0×10−2, 1.4×10−2, and 1.3×10−3 at 20, 32, and 43 °C, respectively. Aerobic degradation rates decreased dramatically under aerobic thermophilic conditions (<0.1×10−2 h−1 at 60 °C). The degradation rate under anoxic denitrifying conditions was 0.3×10−2 h−1, whereas the rate under alternating conditions (aerobic-anoxic) was 0.8×10−2 h−1. Aerobic DEHP degradation in activated sludge samples was stimulated 5-9 times by addition of a phthalate degrading bacterium. The phthalate degrading bacterium was isolated from activated sludge, and maintained a capacity for DEHP degradation while growing on vegetable oil. Collectively, the results of the study identified several controls of microbial PE degradation in activated sludge. These controls may be considered to enhance PE degradation in activated sludge WWTP with biological removal of nitrogen and phosphorus.  相似文献   
10.
The influence of functional end groups on the thermal stability of poly(lactic acid) (PLA) in nitrogen‐ and oxygen‐enriched atmospheres has been investigated in this article using differential scanning calorimetry, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA). Functional end groups of PLA were modified by succinic anhydride and l ‐cysteine by the addition–elimination reaction. PLA was synthesized by azeotropic condensation of l ‐lactic acid in xylene and characterized by nuclear magnetic resonance. The values of the activation energies determined by TGA in nitrogen and oxygen atmospheres revealed that the character of functional end groups has remarkable influence on the thermal stability of PLA. Moreover, DMA confirmed the strong influence of functional end groups of PLA on polymer chains motion. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41105.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号