首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   4篇
电工技术   1篇
化学工业   8篇
轻工业   5篇
无线电   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
排序方式: 共有16条查询结果,搜索用时 459 毫秒
1.
Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.  相似文献   
2.
Bacterial biofilms are multicellular communities firmly attached to solid extracellular substrates. They are considered the primary cause of huge economic losses, from medicine due to medical implants’ failure to large infrastructure due to enhanced pipe corrosion. Therefore, their eradication is highly desirable. Here, the preparation of ZnO self-propelled micromotors is reported, programming their morphology and motion properties through Ag doping. The ZnO:Ag micromotors actively move upon light irradiation via a self-electrophoretic mechanism, showing excellent light-controlled on/off switching motion. At the same time, the rapid and effective removal of both gram-positive and gram-negative bacteria biofilms from the solid surface is demonstrated, exploiting the well-known antibacterial activity of both Ag and ZnO as well as the enhanced diffusion of the micromotors. The new concept for the low-cost and scalable preparation of chemically programmable Ag-doped ZnO micromotors here illustrated opens a new route toward the formulation of a new class of light-driven semiconducting self-propelled micromotors for environmental applications.  相似文献   
3.
Coccolith‐associated polysaccharides (CAPs) are thought to be a key part of the biomineralization process in coccolithophores; however, their role is not fully understood. Two different systems that promote different polymorphs of calcium carbonate are used to show the effect of CAPs on nucleation and polymorph selection in vitro. Using a combination of time‐resolved cryo‐transmission electron microscopy and scanning electron microscopy, the mechanisms of calcite nucleation and growth in the presence of the intracrystalline fraction are examined containing CAPs extracted from coccoliths from Gephyrocapsa oceanica and Emiliania huxleyi, two closely related coccolithophore species. The CAPs extracted from G. oceanica are shown to promote calcite nucleation in vitro, even under conditions favoring the kinetic products of calcium carbonate, vaterite, and aragonite. This is not the case with CAPs extracted from E. huxleyi, suggesting that the functional role of CAPs in vivo may be different between the two species. Additionally, high‐resolution synchrotron powder X‐ray diffraction has revealed that the polysaccharide is located between grain boundaries of both calcite produced in the presence of the CAPs in vitro and biogenic calcite, rather than within the crystal lattice.  相似文献   
4.
An extremely simple procedure has been developed for the immobilization of Saccharomyces cerevisiae cells on magnetic chitosan microparticles. The magnetic carrier was prepared using an inexpensive, simple, rapid, one‐pot process, based on the microwave irradiation of chitosan and ferrous sulphate at high pH. Immobilized yeast cells have been used for sucrose hydrolysis, hydrogen peroxide decomposition and the adsorption of selected dyes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
6.
7.
8.
Double‐hydrophilic, semi‐interpenetrating (semi‐IPN) hydrogels are synthesized by encapsulating hydrophilic polyvinylpyrrolidone (PVP) linear chains in structure‐defined 1,2‐bis‐(2‐iodoethoxy)ethane (BIEE)‐crosslinked (poly(2‐(dimethylamino)ethyl methacrylate) (pDMAEMA) hydrogels. A series of semi‐IPN double‐hydrophilic hydrogels are prepared in which the pDMAEMA/BIEE content is kept the same and only the PVP content is varied, from 0 up to 33 wt%. The mechanical properties of the water‐swollen hydrogels are experimentally evaluated under unconfined compressive loading conditions, while a nonlinear hyperelastic constitutive equation is used to predict their mechanical response. No significant difference is found in the mechanical response of the semi‐IPN PVP/pDMAEMA/BIEE hydrogel containing 5 wt% PVP compared to the pDMAEMA/BIEE analog, however, for greater loading percentages (15 and 33 wt% of PVP), the semi‐IPN hydrogels exhibit less stiffness/higher ductility. Furthermore, in vitro biocompatibility studies are carried out for the pDMAEMA/BIEE and the semi‐IPN PVP/pDMAEMA/BIEE, indicating that both the formulations exhibit no toxicity in cultured cells.  相似文献   
9.
Bisphenol A was efficiently adsorbed on biochar magnetically modified with microwave-synthesized magnetic iron oxide particles. The adsorption followed the Langmuir isotherm model, and the maximum adsorption capacity was 77.4 mg per gram of magnetic biochar at 282.15 K. Kinetics of sorption process followed the pseudo-second-order kinetic model, and thermodynamic studies described an exothermic and spontaneous adsorption process. The prepared material exhibited high adsorption of bisphenol A and a rapid magnetic response to an external magnetic field.  相似文献   
10.
Maternal immune activation (MIA) during pregnancy represents an important environmental factor in the etiology of schizophrenia and autism spectrum disorders (ASD). Our goal was to investigate the impacts of MIA on the brain and behavior of adolescent and adult offspring, as a rat model of these neurodevelopmental disorders. We injected bacterial lipopolysaccharide (LPS, 1 mg/kg) to pregnant Wistar dams from gestational day 7, every other day, up to delivery. Behavior of the offspring was examined in a comprehensive battery of tasks at postnatal days P45 and P90. Several brain parameters were analyzed at P28. The results showed that prenatal immune activation caused social and communication impairments in the adult offspring of both sexes; males were affected already in adolescence. MIA also caused prepulse inhibition deficit in females and increased the startle reaction in males. Anxiety and hypolocomotion were apparent in LPS-affected males and females. In the 28-day-old LPS offspring, we found enlargement of the brain and decreased numbers of parvalbumin-positive interneurons in the frontal cortex in both sexes. To conclude, our data indicate that sex of the offspring plays a crucial role in the development of the MIA-induced behavioral alterations, whereas changes in the brain apparent in young animals are sex-independent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号