首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27718篇
  免费   2080篇
  国内免费   868篇
电工技术   1374篇
技术理论   4篇
综合类   1723篇
化学工业   4852篇
金属工艺   1270篇
机械仪表   1635篇
建筑科学   2061篇
矿业工程   635篇
能源动力   751篇
轻工业   2141篇
水利工程   449篇
石油天然气   1478篇
武器工业   204篇
无线电   2790篇
一般工业技术   3890篇
冶金工业   1750篇
原子能技术   289篇
自动化技术   3370篇
  2024年   48篇
  2023年   372篇
  2022年   503篇
  2021年   805篇
  2020年   665篇
  2019年   602篇
  2018年   683篇
  2017年   812篇
  2016年   744篇
  2015年   956篇
  2014年   1198篇
  2013年   1550篇
  2012年   1631篇
  2011年   1753篇
  2010年   1478篇
  2009年   1415篇
  2008年   1501篇
  2007年   1428篇
  2006年   1523篇
  2005年   1392篇
  2004年   911篇
  2003年   853篇
  2002年   783篇
  2001年   720篇
  2000年   833篇
  1999年   898篇
  1998年   876篇
  1997年   724篇
  1996年   604篇
  1995年   550篇
  1994年   416篇
  1993年   308篇
  1992年   240篇
  1991年   194篇
  1990年   151篇
  1989年   134篇
  1988年   109篇
  1987年   54篇
  1986年   54篇
  1985年   49篇
  1984年   21篇
  1983年   14篇
  1982年   21篇
  1981年   15篇
  1980年   14篇
  1979年   11篇
  1978年   6篇
  1977年   13篇
  1976年   15篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This article presents a state-space model with time-delay to map the relationship between known input-output data for discrete systems. For the given input-output data, a model identification algorithm combining parameter estimation and state estimation is proposed in line with the causality constraints. Consequently, this article proposes a least squares parameter estimation algorithm, and analyzes its convergence for the studied systems to prove that the parameter estimation errors converge to zero under the persistent excitation conditions. In control system design, the U-model based control is introduced to provide a unilateral platform to improve the design efficiency and generality. A simulation portfolio from modeling to control is provided with computational experiments to validate the derived results.  相似文献   
2.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
3.
In this study, La was doped into the lithium layer of Li-rich cathode material and formed a layered-spinel hetero-structure. The morphology, crystal structure, element valence and kinetics of lithium ion migration were studied by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The La doped lithium-rich cathode material exhibited similar initial discharge capacity of 262.8 mAh g?1 at 0.1 C compared with the undoped material, but the discharge capacity retention rate can be obviously improved to 90% after 50 cycles at 1.0 C. Besides that, much better rate capability and Li+ diffusion coefficient were observed. The results revealed that La doping not only stabilized the material structure and reduced the Li/Ni mixing degree, but also induced the generation of spinel phase to provide three-dimensional diffusion channels for lithium ion migration. Moreover, the porous structure of the doped samples also contributed to the remarkable excellent electrochemical performance. All of these factors combined to significantly improve the electrochemical performance of the material.  相似文献   
4.

LiFe2/3Mn1/3PO4/C composite was prepared by the rheological phase reaction using LiH2PO4, Li2CO3, FePO4, Mn(Ac)2·4H2O and ascorbic acid as starting materials. The crystal structure and morphology of as-synthesized sample were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The analysis of XRD results showed that the obtained sample was single-phase with orthorhombic olivine-type structure (Pnma space group). SEM micrographs revealed that the sample was aggregates, with an irregular morphology. The initial discharge capacity was 166.9, 149.1, 139.6, 112.8, 82.93 mAh g??1 at the rate of 0.1, 0.5, 1, 2, and 10 C, respectively. And when the rate was 0.1, 0.5, 1, 2, and 10 C, the capacity retention was 92.2%, 90%, 92.9%, 97.6%, 91.5% after 50, 100, 200, 200, 500 cycles, respectively.

  相似文献   
5.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   
6.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
7.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
8.
Abstract

Breast cancer is a common malignancy with poor prognosis. Cancer cells are heterogeneous and cancer stem cells (CSCs) are primarily responsible for tumor relapse, treatment-resistance and metastasis, so for breast cancer stem cells (BCSCs). Diets are known to be associated with carcinogenesis. Food-derived polyphenols are able to attenuate the formation and virulence of BCSCs, implying that these compounds and their analogs might be promising agents for preventing breast cancer. In the present review, we summarized the origin and surface markers of BCSCs and possible mechanisms responsible for the inhibitory effects of polyphenols on BCSCs. The suppressive effects of common dietary polyphenols against BCSCs, such as curcumin, epigallocatechin gallate (EGCG) and related polyphenolic compounds were further discussed.  相似文献   
9.
10.
Traditionally, in supervised machine learning, (a significant) part of the available data (usually 50%-80%) is used for training and the rest—for validation. In many problems, however, the data are highly imbalanced in regard to different classes or does not have good coverage of the feasible data space which, in turn, creates problems in validation and usage phase. In this paper, we propose a technique for synthesizing feasible and likely data to help balance the classes as well as to boost the performance in terms of confusion matrix as well as overall. The idea, in a nutshell, is to synthesize data samples in close vicinity to the actual data samples specifically for the less represented (minority) classes. This has also implications to the so-called fairness of machine learning. In this paper, we propose a specific method for synthesizing data in a way to balance the classes and boost the performance, especially of the minority classes. It is generic and can be applied to different base algorithms, for example, support vector machines, k-nearest neighbour classifiers deep neural, rule-based classifiers, decision trees, and so forth. The results demonstrated that (a) a significantly more balanced (and fair) classification results can be achieved and (b) that the overall performance as well as the performance per class measured by confusion matrix can be boosted. In addition, this approach can be very valuable for the cases when the number of actual available labelled data is small which itself is one of the problems of the contemporary machine learning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号