首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   7篇
化学工业   17篇
轻工业   45篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1981年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
Heat‐stabilized, defatted rice bran (HDRB) serves as a potential source of phenolic compounds which have numerous purported health benefits. An estimated 70% of phenolics present in rice bran are esterified to the arabinoxylan residues of the cell walls. Release of such compounds could provide a value‐added application for HDRB. The objective of this study was to extract and quantify phenolics from HDRB using fermentation technology. Out of 8 organisms selected for rice bran fermentation, Bacillus subtilis subspecies subtilis had the maximum phenolic release of 26.8 mg ferulic acid equivalents (FAE) per gram HDRB. Response surface methodology was used to further optimize the release of rice bran phenolics. An optimum of 28.6 mg FAE/g rice bran was predicted at 168 h, 0.01% inoculation level, and 100 mg HDRB/mL. Fermentation of HDRB for 96 h with B. subtilis subspecies subtilis resulted in a significant increase in phenolic yield, phenolic concentration, and radical scavenging capacity. Fermented rice bran had 4.86 mg gentistic acid, 1.38 mg caffeic acid, 6.03 mg syringic acid, 19.02 mg (‐)‐epicatechin, 4.08 mg p‐courmaric acid, 4.64 mg ferulic acid, 10.04 mg sinapic acid, and 17.59 mg benzoic acid per 100 g fermented extract compared to 0.65 mg p‐courmaric acid and 0.36 mg ferulic acid per 100 g nonfermented extract. The high phenolic content and antioxidant activity of fermented HDRB extract indicates that rice bran fermentation under optimized condition is a potential means of meeting the demand for an effective and affordable antioxidant.  相似文献   
2.
The prevalence of foodborne illnesses is continually on rise. In the U.S.A., Escherichia coli O157:H7 (E. coli) has been associated with several outbreaks in minimally processed foods. Spinach and lettuce pose higher food safety risks and recurring food recalls suggest the insufficiency of current disinfection strategies. We aimed at offering a natural antimicrobial alternative using organic acids (malic, tartaric, and lactic acids [MA, TA, and LA, respectively]) and grape seed extract (GSE) and a novel application method using electrostatic spraying to evenly distribute the antimicrobials onto produce. Spinach and lettuce samples were washed, sanitized with sodium hypochlorite solution (6.25 mL/L), dip inoculated in water containing E. coli (7.0 log CFU/mL) for 24 h, and rewashed with sterile water to remove nonadhered pathogens. The samples were sprayed electrostatically with MA, LA, and GSE alone and in combinations and for comparison, with phosphoric acid (PA) and pH controls with deionized water adjusted to 1.5/2.3/3.6 and stored at 4 °C. When combined with LA (3%), MA (3%) showed 2.1 to 4.0 log CFU/g reduction of E. coli between the days 1 and 14 on spinach and 1.1 to 2.5 log CFU/g reduction on lettuce. Treatment with PA (1.5%) and PA (1.5%)-GSE (2%) exhibited 1.1 to 2.1 log CFU/g inhibition of E. coli on spinach during the 14-d storage. Our findings demonstrated the efficacy of electrostatic spraying of MA, LA, and GSE on fresh produce to improve the safety and lower the public health burden linked to produce contamination. PRACTICAL APPLICATION: Electrostatic spraying is an emerging technique that can be adopted to improve the distribution and application of antimicrobials during fresh produce sanitation. Relatively simple and quick, the process can access most/all parts of produce surface and offer protection from food pathogens. The use of malic and lactic acids with or without grape seed extract can serve as effective antimicrobials when sprayed electrostatically, lowering the risk from postcontamination issues with spinach and iceberg lettuce. This application technology can be extended to improve the commercial food safety of other produce, fruits, poultry, and meat.  相似文献   
3.
The foaming properties of soy protein isolate (SPI) in the presence of xanthan gum (XG) were investigated. The XG solution alone did not exhibit any foaming ability. The optimal foaming properties were obtained from the SPI-XG dispersion that contained 0.1% SPI and 0.2% XG. This SPI-XG dispersion gave higher foaming capacity than that of SPI or egg white (P<0.05). The foam stability of SPI-XG dispersion was nine times higher than that of SPI and egg white (P<0.05). The SPI-XG foams were stable over wide ranges of ionic strength (0.1 to 1.0 M NaCl) and pH (4.5 to 9.0), and when heated (85°C, 1 h).  相似文献   
4.
ABSTRACT: The effectiveness of whey protein isolate (WPI) coatings incorporated with grape seed extract (GSE), nisin (N), malic acid (MA), and ethylenediamine tetraacetic acid (EDTA) and their combinations to inhibit the growth of Listeria monocytogenes, E. coli O157:H7, and Salmonella typhimurium were evaluated in a turkey frankfurter system through surface inoculation (approximately 106 CFU/g) of pathogens. The inoculated frankfurters were dipped into WPI film forming solutions both with and without the addition of antimicrobial agents (GSE, MA, or N and EDTA, or combinations). Samples were stored at 4 °C for 28 d. The L. monocytogenes population (5.5 log/g) decreased to 2.3 log/g after 28 d at 4 °C in the samples containing nisin (6000 IU/g) combined with GSE (0.5%) and MA (1.0%). The S. typhimurium population (6.0 log/g) was decreased to approximately 1 log cycles after 28 d at 4 °C in the samples coated with WPI containing a combination of N, MA, GSE, and EDTA. The E. coli O157:H7 population (6.15 log/g) was decreased by 4.6 log cycles after 28 d in samples containing WPI coating incorporated with N, MA, and EDTA. These findings demonstrated that the use of an edible film coating containing nisin, organic acids, and natural extracts is a promising means of controlling the growth and recontamination of L. monocytogenes, S. typhimurium, and E. coli O157:H7 in ready‐to‐eat poultry products.  相似文献   
5.
ABSTRACT: The effects of hydrocolloid (propylene glycol alginate, K-carrageenan, citrus pectin, and xanthan gum) additions in soy protein concentrate (SPC) preparation on genistin and genistein retentions were investigated. Additions of xanthan, alginate, pectin, and carrageenan in SPC prepared with the acid leach method gave 0.711, 0.760, 0.792, and 0.825 mg/g genistein, respectively, whereas control SPC prepared without hydrocolloid gave 0.721 mg/g genistein. SPC prepared under optimum conditions for (β-glucosidase hydrolytic activity with xanthan, alginate, carrageenan, and pectin had 0.943, 0.975, 1.015, and 1.132 mg/g genistein, respectively, compared to genistein in control SPC (0.845 mg/g) under the optimum conditions. Combined (β-glucosidase and pectin treatment in SPC preparation resulted in high genistein SPC (1.551 mg/g).  相似文献   
6.
Vegetable soybeans are marketed fresh or frozen, either shelled or in pods. The objective of this research was to characterise the change in quality attributes of vegetable soybean with boiling time (0–20 min), and presence/absence of pods, using an electrical-resistance stove or a steam-jacketed kettle. Trypsin inhibitor activity (TIA), texture, colour, soluble sugars, nitrogen, calcium and iron content were analysed. Blanching using a steam-jacketed kettle for approximately 2 min rendered 80% inactivation of TIA, and resulted in high colour, texture and sucrose. There were no differences between blanching in pods or shelled for TIA, colour and texture; however, blanching in pods prevented losses of sucrose. Blanching did not affect iron, mono- and oligosaccharide levels, but increased nitrogen and calcium content. Additionally, we observed that all traits decreased linearly with cooking time when using an electrical-resistance stove, except for calcium and nitrogen that increased, and oligosaccharides that remained constant.  相似文献   
7.
8.
ABSTRACT: The effectiveness of 3 carbohydrases for protein extraction from heat-stabilized defatted rice bran (HDRB) was evaluated. Amylase, viscozyme and celluclast extracted a maximum of 45.4, 12.1, and 28.5% protein, respectively. Further study showed that extracted protein ranged from 9.5 to 58.4% under conditions of water to bran ratio (5:1 to 20:1), α-amylase (0 to 110000 units/10 g rice bran), temperature (35 to 55 °C), and time (1 to 8 h). The maximum protein extracted was 58.4% with a water to bran ratio of 17:1, 87637 units amylase, and 50.9 °C. These results suggest that impure food-grade amylase containing protease is more effective than celluclast and viscozyme in protein extraction from HDRB.  相似文献   
9.
ABSTRACT: Molecular size, thermal properties, hydrophobicity, nitrogen solubility, and emulsifying and foaming properties were determined for protein products from heat‐stabilized defatted rice bran. The freeze‐dried and spray‐dried proteins had molecular sizes between 6.5 to 66.2 kDa; denaturation temperatures of 84.1 and 84.6 °C, enthalpies of 2.5 and 2.37 J/g, hydrophobicities of 20677 and 22611, maximum solubilities of 66.3% and 66.1% at pH 12.0, emulsifying capacities of 0.19 and 0.18, emulsion stabilities of 16.5 and 17.3 min, foam capacities of 4.0 mL and 4.2 mL, and negligible foam stabilities. These results demonstrated that the extracted rice bran protein has potential as a nutraceutical ingredient in food applications.  相似文献   
10.
Effect of lipids on soy protein isolate solubility   总被引:9,自引:3,他引:6  
Reduced-lipid soy protein isolate (SPI), prepared from soy flour treated so that most of the polar lipids have been removed, exhibited an increase in protein solubility of 50% over that of the control SPI prepared from hexane-defatted flour. Adding lipids from a commercial SPI during processing of reduced-lipid SPI decreased SPI solubility by 46%. The 19% decreased solubility caused by the lipids (primarily phospholipids) was largely recovered by treating the protein with a reducing agent (2-mercaptoethanol). The balance of protein insolubility, caused by the lipids, was attributed to a smaller lipid fraction (approximately 5% of the total lipids). Adding lipids during SPI processing contributed to both the formation of oxidized protein sulfhydryls, incapable of being reduced by 2-mercaptoethanol, and to oxidative deterioration of protein as determined by protein carbonyl contents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号