首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2876篇
  免费   263篇
  国内免费   16篇
电工技术   49篇
综合类   11篇
化学工业   694篇
金属工艺   133篇
机械仪表   162篇
建筑科学   76篇
矿业工程   10篇
能源动力   126篇
轻工业   242篇
水利工程   6篇
石油天然气   15篇
无线电   506篇
一般工业技术   563篇
冶金工业   172篇
原子能技术   29篇
自动化技术   361篇
  2023年   27篇
  2022年   25篇
  2021年   70篇
  2020年   58篇
  2019年   72篇
  2018年   93篇
  2017年   99篇
  2016年   115篇
  2015年   107篇
  2014年   129篇
  2013年   224篇
  2012年   199篇
  2011年   221篇
  2010年   163篇
  2009年   184篇
  2008年   143篇
  2007年   136篇
  2006年   120篇
  2005年   125篇
  2004年   92篇
  2003年   80篇
  2002年   84篇
  2001年   56篇
  2000年   47篇
  1999年   48篇
  1998年   58篇
  1997年   67篇
  1996年   55篇
  1995年   38篇
  1994年   28篇
  1993年   22篇
  1992年   6篇
  1991年   18篇
  1990年   7篇
  1989年   15篇
  1988年   23篇
  1987年   4篇
  1986年   8篇
  1985年   8篇
  1984年   9篇
  1983年   7篇
  1982年   6篇
  1981年   5篇
  1980年   8篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1975年   3篇
  1974年   4篇
  1973年   8篇
排序方式: 共有3155条查询结果,搜索用时 31 毫秒
1.
2.
3.
We present the results of a life-cycle assessment (LCA) for the manufacturing and end-of-life (EoL) phases of the following fuel-cell and hydrogen (FCH) technologies: alkaline water electrolyser (AWE), polymer-electrolyte-membrane water electrolyser (PEMWE), high-temperature (HT) and low-temperature (LT) polymer-electrolyte-membrane fuel cells (PEMFCs), together with the balance-of-plant components. New life-cycle inventories (LCIs), i.e., material inputs for the AWE, PEMWE and HT PEMFC are developed, whereas the existing LCI for the LT PEMFC is adopted from a previous EU-funded project. The LCA models for all four FCH technologies are created by modelling the manufacturing phase, followed by defining the EoL strategies and processes used and finally by assessing the effects of the EoL approach using environmental indicators. The effects are analysed with a stepwise approach, where the CML2001 assessment method is used to evaluate the environmental impacts. The results show that the environmental impacts of the manufacturing phase can be substantially reduced by using the proposed EoL strategies (i.e., recycled materials being used in the manufacturing phase and replacing some of the virgin materials). To point out the importance of critical materials (in this case, the platinum-group metals or PGMs) and their recycling strategies, further analyses were made. By comparing the EoL phase with and without the recycling of PGMs, an increase in the environmental impacts is observed, which is much greater in the case of both fuel-cell systems, because they contain a larger quantity of PGMs.  相似文献   
4.
The distribution of fibers in the composite (which takes into account both their locations and orientations) is one of the important factors that affect the mechanical properties of FRCs. However, this parameter depends on various factors during composite fabrication, and controlling the distribution of fibers in the produced material represents a significant challenge. In this study, the applicability of three-dimensional (3D) printing technique for controlling fiber distributions was evaluated. The fibers fabricated using a 3D printer were placed inside a mold to produce cementitious composites. Three-point bending tests were conducted and the results of the experiment were discussed.  相似文献   
5.
Introducing a carbon single coating is a popular method used to protect SiCf/Ti composites from severe interface reactions. However, carbon coatings lose their protective effect on SiC fibres at high temperature, even after a short period time. As such, given the strong demand for high temperature applications in aeronautics and astronautics a more coating which is more effective at high temperatures is desirable. In order to improve the high temperature interfacial stability of SiCf/Ti composites, a C/TiCx duplex coating system with different C contents in TiCx was introduced to explore the protection of fibres at 1200?°C for 1?h. The results show that the C/quasi-stoichiometric TiC coating system protects the SiC fibres most effectively. Based on insights from the evolution of the interface structure, TiCx has been identified as an interfacial reaction product from the C single coating, exhibiting a gradient in C content and grain size, which is different from a deposited TiC layer with a well-distributed composition and structure. The different coating structure gives rise to different ability to resist C diffusion at high temperatures, in which poor resistance ability appears in TiCx interfacial reaction layer coming from C single coating due to short-circuit diffusion in C-rich fine-grained TiC layer and fast intracrystalline diffusion trigged by amounts of vacancies in sub-stoichiometric coarse-grained TiC layer. Therefore, C/quasi-stoichiometric TiC duplex coatings with a thick, coarse-grained quasi-stoichiometric TiC layer could effectively inhibit C diffusion by comparison to C single coatings, and is more effective than C/rich-carbon TiC duplex coatings due to the existence of short-circuit diffusion in the latter. As such, C/quasi-stoichiometric TiC duplex coatings appear to be an optimal diffusion barrier for SiCf/Ti composites at high temperature.  相似文献   
6.
We investigated the appearance of flow and weld lines when metallic pigments are used in polymer blends and how such lines can be eliminated by improving the pigment particle shape and optimizing pigment loading. Acrylonitrile butadiene styrene copolymer and two types of aluminum flakes, lamellar and three-dimensional (3D), were blended in a twin-screw extruder with a screw diameter of 25 mm. The temperatures from the hopper to the nozzle were 140, 180, 220, 220, 220, 220, and 220°C. Weld and flow lines were observed using field-emission scanning electron microscopy and energy dispersive X-ray spectroscopy of specially manufactured injection specimens. In the flow line region, traditional lamellar flakes were randomly oriented, while 3D flakes exhibited a distinct and stable orientation. Based on these observations, flow and weld lines in a finished metal/polymer blend can be minimized by using 3D metal particles in place of lamellar flakes. We also investigated the effects of aluminum flake loading on weld and flow line visibility. At low loading, weld lines were clearly visible due to the lack of pigmentation in the front of the polymer flow. Conversely, high loading resulted in relatively high concentrations of pigment near the weld line area, reducing weld line visibility. These findings suggest that there is an optimum metal loading level where the visibility of flow and weld lines is minimized.  相似文献   
7.
8.
9.
10.
Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter‐species, and inter‐kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)—bacterial extracellular vesicles—with immune‐modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF‐α and IL‐6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM‐1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post‐injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号