首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   39篇
  国内免费   1篇
电工技术   25篇
综合类   2篇
化学工业   160篇
金属工艺   19篇
机械仪表   23篇
建筑科学   11篇
能源动力   87篇
轻工业   17篇
水利工程   8篇
石油天然气   2篇
无线电   54篇
一般工业技术   150篇
冶金工业   15篇
原子能技术   5篇
自动化技术   52篇
  2024年   1篇
  2023年   17篇
  2022年   21篇
  2021年   26篇
  2020年   38篇
  2019年   21篇
  2018年   41篇
  2017年   23篇
  2016年   35篇
  2015年   20篇
  2014年   34篇
  2013年   57篇
  2012年   35篇
  2011年   43篇
  2010年   34篇
  2009年   29篇
  2008年   26篇
  2007年   21篇
  2006年   13篇
  2005年   6篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1995年   8篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1972年   1篇
  1968年   2篇
  1965年   1篇
排序方式: 共有630条查询结果,搜索用时 217 毫秒
1.
Diesel is the main source of world transportation due to higher combustion efficiency, compliance, consistency and cost-economy. It is also a major contributor to the world prosperity since it is used extensively. Diesel engine’s emissions are the serious hazard to the world environment and it is measured to be the major causes of air pollution. The demand in biofuels for years created a scope for aloe vera into biodiesels. Aloe vera, having higher calorific value vnthan other plant sources used as biodiesels, enhanced us in making another alternative biodiesel, which has lesser emissions and better performance. In this research work, four biodiesel blends from aloe vera oil with cerium oxide additive are explored for their performance and emission characteristics. The results proved B30 (30% biodiesel, 68% diesel and 1% cerium oxide) gives good performance when compared to other blends.  相似文献   
2.
Unsteady magnetohydrodynamic heat and mass transfer analysis of hybrid nanoliquid flow over a stretching surface with chemical reaction, suction, slip effects, and thermal radiation is analyzed in this study. A combination of alumina (Al2O3) and titanium oxide (TiO2) nanoparticles are taken as hybrid nanoparticles and water is considered as the basefluid. Using the similarity transformation method, the governing equations are changed into a system of ordinary differential equations. These equations together with boundary conditions are numerically evaluated by using the Finite element method. The influence of various pertinent parameters on the profiles of fluids concentration, temperature, and velocity is calculated and the outcomes are plotted through graphs. The values of nondimensional rates of heat transfer, mass transfer, and velocity are also analyzed and the results are depicted in tables. Temperature sketches of hybrid nanoliquid intensified in both the steady and unsteady cases as the volume fraction of both nanoparticles rises.  相似文献   
3.
Wireless Personal Communications - In this paper, we investigate the effect of multipath fading on the combined signal-to-noise ratio (SNR) in conjunction with multiband orthogonal frequency...  相似文献   
4.
Abstract

The detonation of high explosive (HE) material generates a cloud containing a high concentration of detonation products in the form of aerosol particles and gases. Modeling and simulation of aerosol metrics in an explosive cloud is a complex problem as it involves various processes such as chemical reaction, nucleation, volume expansion, and coagulation. Several models have been developed to study the atmospheric dispersion of these detonation products, but very few or no model is available to study the evolution of aerosol metrics at the early stage. In this work, we present a numerical model to simulate the temporal evolution of aerosol metrics in an expanding cloud by coupling transient thermodynamic properties with important microphysical processes. To illustrate the application, the numerical model is applied to a typical HE, and the aerosol particle properties such as size distribution, number concentration, and average size are estimated from the numerical results. These results will provide the essential input conditions for atmospheric dispersion models to estimate the atmospheric concentration and deposition of aerosol particles.

Copyright © 2020 American Association for Aerosol Research  相似文献   
5.
6.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
7.
Hybrid nanofluids are formulated with various kinds of base fluids. They are designed to provide good heat transfer performance. They can achieve this by dispersing various kinds of nanoparticles in the base materials. This new technology of formulating hybrid nanofluids has a wide range of applications in various industries such as solar energy, medical equipment, and aerospace. Keeping these applications in view, this study provides an insight into the effects of convective heat transport on a Hybrid nanofluid, across a rotating sheet with a variable heat source. In this investigation, the governing boundary layer partial differential equations were modified into the ordinary differential equations, by using the proper similarity transformations. Later, they were solved numerically, with the support of the Lobatto IIIA technique in MATLAB. The influence of the Richardson number on flow parameters was studied, and it was discovered that increasing Ri increases the velocity while decreasing temperature and concentration profiles. The impact of various other flow parameters on the flow fields and also on the behavior of Nusselt number, coefficient skin friction, and Sherwood number were studied and represented graphically. The outcomes were found to be in excellent accord when compared with quoted studies.  相似文献   
8.
ABSTRACT

This detailed study focuses mainly on the reduction of oxides of nitrogen emissions from CI engines. It also discusses about other emissions and performance parameters. Injection timing retardation and simultaneous technology methods have been employed for controlling oxides of nitrogen emissions by many researchers. This review paper studies on injection timing retardation and simultaneous technology and its effects on various operating parameters carried out in a biodiesel-powered CI engines. The objective of this work is to find the significance of injection parameters such as retardation of injection timing and simultaneous technology on the various emission parameters. This paper also deals upon the various methods of retardation of injection timing and simultaneous technology to examine the emissions such as HC, CO, NOx, smoke, and particulate matters. The present study showed that widespread review on CI engine emission characteristics in a CI engine fuelled with biodiesel blends.  相似文献   
9.
A mixing index based on solid volume fraction fields is developed for gas-solid flows. Conventional mixing indices are based on particle realizations of granular mixing and are applicable to experimental data or discrete element method simulations. However, these indices cannot be used as-is for multifluid models, and an index for characterizing mixing in gas-solid flows from continuous fields is needed. The performance of the new mixing index is tested in two applications. The first is a 3D simulation of the mixing of biomass and sand in a fluidized bed reactor, and the second is a 2D simulation of binary particle segregation in a fluidized bed. The simulations are performed using OpenFOAM®. The mixing index is used to quantify gas-solid mixing using solid volume fractions and solid-solid mixing using solid fractions. The formulation of conventional mixing indices is extended to be used with solid volume fractions fields, and methods for performance improvement are presented.  相似文献   
10.
For successful osseointegration of load-bearing implants, an improved bone–implant contact area through a trabecular porous surface resulting in minimized stress shielding effect is highly desirable. We propose a novel strategy of green net shaping a ceramic dough, combined with a reticular foam replica method and gradient coating, to fabricate biomimetic porosity in a customizable ceramic dental implant for the first time. About 85 vol% porosity and 300–600-μm pore size were evident in microCT and electron microscopy of the sintered samples, suitable for bone ingrowth. Excellent integrity at the interface along with homogeneous distribution of secondary alumina phase in zirconia matrix was achieved, despite the difference in the green state powder loading between the dough and the slurry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号