首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   3篇
  国内免费   221篇
电工技术   1篇
综合类   5篇
化学工业   9篇
金属工艺   263篇
机械仪表   2篇
建筑科学   1篇
无线电   4篇
一般工业技术   70篇
冶金工业   7篇
原子能技术   1篇
  2023年   15篇
  2022年   8篇
  2021年   8篇
  2020年   6篇
  2019年   7篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   11篇
  2013年   10篇
  2012年   7篇
  2011年   19篇
  2010年   14篇
  2009年   23篇
  2008年   12篇
  2007年   18篇
  2006年   18篇
  2005年   12篇
  2004年   17篇
  2003年   30篇
  2002年   19篇
  2001年   20篇
  2000年   7篇
  1999年   6篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   10篇
  1992年   8篇
  1991年   5篇
  1990年   2篇
  1989年   8篇
  1988年   3篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
1.
针对有机涂层中氧化石墨烯(GO)分散性差、与树脂相容性不好的问题,本工作选择间苯二胺作为"桥接物质",利用其分子上的两个胺基与GO和环氧树脂的环氧基团分别键合,从而改善GO与环氧树脂间的相容性。同时,利用间苯二胺的空间位阻效应有效改善了GO的团聚问题,提高在环氧树脂中的分散性。采用化学接枝法得到间苯二胺表面改性的GO(M-GO),并制备了M-GO与环氧树脂E-44复合涂料(EP/M-GO)。结果表明,间苯二胺的胺基能够成功与GO表面的环氧基团键合,且在透射电镜下可以观察到M-GO呈现出少量片层的状态,团聚现象明显改善。另一方面,涂层截面形貌表明M-GO与基料树脂之间结合良好。复合涂料在12 d的盐雾实验后仍然能够为金属基底提供保护,且浸泡1000 h后的阻抗模值(|Z|0.01 Hz)仍可达109数量级,防腐性能明显提高。  相似文献   
2.
采用多弧离子镀技术在镍基高温合金上沉积NiCoCrAlY涂层,通过真空热处理消除涂层内部孔洞。研究了950、1000和1050℃热处理后的涂层在1000℃下的氧化实验,以探究最优的热处理温度。采用XRD、SEM和EDS观察分析涂层的物相组成和表截面形貌。结果表明,真空热处理后,基体与涂层结合紧密,氧化增重相对缓慢,涂层表面能形成均匀致密的氧化膜。其中,1000℃下真空热处理的涂层表现出了良好的抗氧化和防剥落性能。  相似文献   
3.
目的 调控析出氟化钙晶体,赋予搪瓷涂层常温自润滑性能。方法 采用球磨和熔融2种方式向作为空白对照组的搪瓷配方中加入质量分数为3.5%的CaF2,制备出3种喷涂于304不锈钢上的搪瓷涂层。通过摩擦磨损实验、软化点测定和维氏硬度测定实验,分别评价搪瓷涂层的摩擦磨损性能、热性能和力学性能,并通过扫描电镜分析搪瓷的晶化情况和磨痕形貌,用电子探针显微分析仪分析磨痕表面的元素分布,探讨润滑机理。结果 采用球磨法加入CaF2制备的搪瓷基复合涂层中,CaF2颗粒的粒径较大且分布不均;在熔炼搪瓷时即加入CaF2颗粒,该氟化物可参与到搪瓷网络结构中,并在搪瓷涂层烧制时原位析出平均粒径为132 nm、大小均匀且弥散分布的纳米级CaF2晶体。结果显示,熔融添加质量分数为3.5%的CaF2,使得搪瓷涂层的摩擦因数由0.57降至0.37,磨损率也降低了2个数量级,而球磨添加质量分数为3.5%CaF2的搪瓷涂层的摩擦因数稍有降低,但磨损率基本无变化。熔融添加氟化物的搪瓷涂层,原位析出了纳米级CaF2晶体,诱使摩擦表面形成了润滑层。结论 CaF2的加入可在一定程度上提高搪瓷涂层在常温条件下的耐磨性和润滑性,当CaF2为原位析出的纳米级晶体时具备优异的减摩润滑效果。  相似文献   
4.
国泰榕  卢小鹏  李岩  张涛  王福会 《表面技术》2021,50(9):278-285, 310
目的 为进一步提高镁稀土合金微弧氧化涂层的耐蚀性能.方法 首先在镁稀土合金表面制备了微弧氧化涂层,随后用磷酸盐后处理溶液,对Mg-Gd-Y合金硅酸盐微弧氧化涂层进行了封孔后处理,并在此过程中添加了缓蚀剂.利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对涂层表面形貌和成分进行分析,利用极化曲线和电化学阻抗(EIS)测试了涂层的耐蚀性能.结果 后处理能够在微弧氧化涂层表面形成MgHPO4沉积层,沉积层的产生有效地封闭了微弧氧化涂层表面的微孔、裂纹等缺陷.缓蚀剂的添加显著增加了沉积物的量,使涂层的磷元素原子数分数由5.37%增加至14.90%,沉积效果显著.极化实验证明,封孔后处理涂层的腐蚀电流密度由1.51×10–7 A/cm2降至4.91×10–8 A/cm2,负载缓蚀剂后,涂层的腐蚀电流密度进一步降低至5.76×10–9 A/cm2,表明其耐蚀性能显著提高.微弧氧化涂层在3.5%NaCl溶液中浸泡384 h后,含缓蚀剂的涂层的总阻抗值可达7825.3?·cm2,明显高于未封孔处理的微弧氧化涂层(403?·cm2),这证明,后处理可有效提高微弧氧化涂层的耐蚀性能.结论 磷酸盐后处理能够在微弧氧化涂层表面生成MgHPO4沉积层,有效地对微弧氧化涂层表面的微孔和微裂纹进行了封闭.缓蚀剂的添加能够显著增强磷酸盐的沉积效果,使涂层的耐蚀性能在后处理的基础上进一步提高.  相似文献   
5.
石墨烯因其优异的力学性能及热化学稳定性、较大的比表面积而在防腐涂层应用中备受关注。采用硅烷偶联剂KH550对氧化石墨烯(GO)进行表面改性,研究了改性GO对深海交变压力模拟环境下环氧涂层失效机制的影响。利用TEM和沉降实验观察了GO粉末的分散性及其与环氧树脂的相容性;利用重量法、附着力测试和拉伸测试研究了涂层的防护性能;利用OCP和EIS研究了涂层在交变压力下的失效历程。结果表明:KH550改性GO涂层在抗渗透性、强韧性、附着力等方面均有明显提高。添加改性GO减少了涂层的表面缺陷,更加致密的涂层结构有效阻碍了溶液的扩散。改性GO与环氧树脂结合良好的界面可延缓交变压力的破坏作用,从而延长了涂层在交变压力环境下的使役寿命。  相似文献   
6.
导电涂料是一种特种功能涂料。根据导电原理可分为添加型导电涂料和本征型导电涂料。主要介绍了各种导电涂料的研究现状、应用情况以及发展趋势。指出探索开发环保型导电涂料是今后工作的研究重点,未来导电涂料将向着高性价比和环保型的方向发展。  相似文献   
7.
Super 304H钢在700~900℃纯水蒸汽中的氧化行为   总被引:1,自引:0,他引:1  
从氧化动力学、氧化膜相组成和微观结构方面,研究了两种表面状态的Super 304H钢在700~900℃纯水蒸汽中的氧化行为。结果表明:Super 304H钢的氧化动力学近似遵从抛物线规律,但是抛物线速率常数和氧化膜结构与氧化温度及试样表面状态密切相关。升高温度和抛光处理都显著增大了抛物线速率常数,促进了Fe氧化物瘤及其下方向内氧化区的生长。  相似文献   
8.
在镍基铸造高温合金K38G上采用脉冲电镀的方法沉积Pt镀层,通过分步加热粉末包埋渗Al处理后,获得表层为单相PtAl2,内层为β-NiAl的Pt-Al涂层.分别对单相PtAl2涂层进行1100℃静态氧化及循环氧化测试,并分析涂层在2种氧化条件下的氧化行为及失效机制.结果表明,单相PtAl2涂层表现出良好的抗静态氧化能力,初期快速增重主要来自于θ-Al2O3的生成,很快θ-Al2O3转变为α-Al2O3且增重趋于平缓.但是,单相PtAl2涂层的抗循环氧化能力较差,循环氧化过程中产生的热应力会导致部分区域PtAl2层剥离或脱落,继而引发涂层过早失效.因此,单相PtAl2涂层不适用于高温负载服役环境,其在循环氧化过程中的失效和退化主要来自于PtAl2层剥落以及剥落区附近β-NiAl层Al元素的快速消耗.  相似文献   
9.
采用静态挂片和极化曲线测试技术研究了铜铁试剂对Q235碳钢在3.5%Na Cl溶液中的缓蚀作用。结果表明,碳钢在3.5%Na Cl溶液中腐蚀严重,主要为活性溶解,并且伴有明显的点腐蚀。铜铁试剂的加入促进了碳钢的阳极钝化,当铜铁试剂的含量为12.8 mmol/L时缓蚀效率达到90%以上,当铜铁试剂浓度增大为19.2和25.6 mmol/L时,缓蚀效率不变。铜铁试剂主要通过在Q235碳钢的表面吸附实现对Q235碳钢的缓蚀。  相似文献   
10.
油田埋地金属管道周围存在着大量的高压输电线路,这些设施在运行过程中会向大地释放大量的杂散电流,造成油气管道的腐蚀泄露。本文进行了高压输电线路周围埋地金属管道杂散电流的现场测试,结果表明:长输石油管道受杂散电流影响严重。尤其当高压输电线路与埋地输油管道近距离平行时,埋地输油管道中杂散电流更严重;油气集输管道受杂散电流影响也十分严重,管地电位波动值和管地电位最大正向偏移值都随着与高压输电线路距离的增加而减小;经排流保护措施后,管道的管地电位波动值和最大正向偏移值都明显减小,管道受杂散电流影响明显减弱,并达到了排流保护的标准。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号