首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  国内免费   6篇
综合类   2篇
化学工业   7篇
金属工艺   6篇
机械仪表   1篇
无线电   1篇
一般工业技术   13篇
冶金工业   1篇
  2020年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   8篇
  2008年   1篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
排序方式: 共有31条查询结果,搜索用时 13 毫秒
1.
采用超声感应加热法在H2O2水热处理C/C复合材料表面沉积了CaHPO4涂层,借助SEM、XRD、FTIR、EDS等手段,研究了衬底温度对涂层的微观结构的影响,并通过划痕测试评价涂层与C/C基体之间的结合强度,同时运用分析天平测量质量以研究涂层的沉积动力学。结果显示,所制得的CaHPO4涂层钙磷比为1.2左右,晶格中出现碳离子。涂层形貌无明显变化,但是伴随温度的升高,涂层致密度降低。涂层与基体之间的结合强度随温度升高而增强,但内聚强度随温度升高而减弱。CaHPO4涂层的感应加热沉积过程受表面化学反应控制,沉积活化能为46.7 kJ/mol。  相似文献   
2.
通过对两种天然鳞片石墨进行微膨胀处理得到微膨石墨,然后以微膨石墨为基体采用化学气相沉积(CVD)法于微膨石墨的孔洞结构中原位生长碳纳米管,制备了碳纳米管/微膨石墨复合负极材料.电化学测试结果表明两种复合材料分别具有443和477 mAh/g的首次可逆容量.两种复合材料在0.2C倍率下循环充放电30次后容量均能保持95%以上;在1C下循环充放电50次后,可逆容量分别稳定在259和195 mAh/g.微膨胀处理形成的微纳米级孔洞以及原位碳纳米管的网络结构,提供了更多的储锂空间,并能够有效地缓冲电极材料在充放电时的体积变化;电解质溶液浸润在纳米孔洞中,有利于缩短锂离子的扩散路径,提高倍率循环性能;同时原位生长的类似常春藤形的碳纳米管可以起到桥梁的作用,避免"孤岛"的形成,增强了复合材料的导电性能.  相似文献   
3.
采用微波化学气相沉积法一步合成了热解炭包覆磷酸铁锂/气相生长炭纤维复合正极材料.借助X射线衍射仪、场发射扫描电子显微镜、高分辨透射电镜和电化学测试仪等测试手段研究了不同制备温度对材料晶体结构、显微形貌和电化学性能的影响.结果表明,当制备温度由500℃升至600℃时,磷酸铁锂主晶相的颗粒尺寸没有发生明显变化,而原位VGCF的网络程度却明显增加,材料的放电比容量随之提高;当制备温度进一步升高到700℃时,磷酸铁锂颗粒异常生长现象加剧,VGCF直径较大且粗细不均,材料的电化学性能变差.研究发现,当温度为600℃时,材料表现出较优的电化学性能,25℃在0.2C、0.5C、1C和3C倍率下的放电比容量分别可达163、159、153和143mAh/g.  相似文献   
4.
为揭示具有良好高温(1300~1600 ℃)抗氧化性能的SiC-Glass涂层在中低温(500~1200 ℃)条件下的氧化防护性能,对SiC-Glass涂层碳/碳(C/C)复合材料的中低温氧化行为和机制进行了系统研究.结果表明,SiC-Glass涂层C/C复合材料的中低温氧化失重服从直线规律,但氧化机制存在温度依赖性,可分为2个区段:(1) 低温区(500~800 ℃),氧化失重速率与温度服从Arrhenius关系,氧化主要受控于氧在涂层缺陷内的扩散速率;(2) 在中温区(800~1200 ℃),氧化失重速率与温度不服从Arrhenius关系,氧化过程受氧在涂层缺陷中的扩散、SiC内涂层材料的氧化、Glass外涂层的部分熔融愈合等多种因素联合控制.对比分析表明,SiC-Glass涂层的中低温抗氧化性能不及其高温抗氧化性能优异.中低温下,涂层缺陷愈合不充分是导致这一现象的主要原因.  相似文献   
5.
以碳毡为预制体,N2为稀释气体,甲烷为碳源前驱体,其分压为10 kPa,滞留时间为0.15 s的工艺条件下,研究了不同沉积温度对微波热解化学气相渗透(chemical vapor infiltration,CVI)工艺制备碳/碳复合材料的致密化速率、样品的体积密度及其密度均匀性的影响,并对其组织结构进行了观察.分析了沉积温度对微波热解CVI工艺制备碳/碳复合材料的密度与组织结构的变化规律.结果表明:在微波热解CVI工艺中,随着沉积温度的降低,碳毡预制体的致密化速率及最终体积密度呈现先升后降,1100 ℃沉积制备复合材料的密度均匀性最好,并呈现从内到外逐步沉积的规律.热解碳的织构主要为中等织构.  相似文献   
6.
短切碳纤维含量对Csf/SiC复合材料力学性能的影响   总被引:1,自引:0,他引:1  
以Si作为主要烧结助剂,采用热压烧结法制备了短切碳纤维-碳化硅(short carbon fiber reinforced SiC composite,Csf/SiC)复合材料.采用X射线衍射仪、扫描电镜、硬度仪以及力学性能试验机等,研究了Csf含量对所制备材料的结构、组成、形貌及复合材料的弯曲强度、Vickers硬度和断裂韧性的影响.结果表明:采用热压法能制备出致密且Csf分布均匀的Csf/SiC复合材料.Csf/SiC复合材料的弯曲强度随Csf含量增加先增大后减小,含15%(体积分数,下同)Csf的Csf/SiC样品强度最高,达到466MPa,并且Csf含量小于30%的Csf/SiC样品强度高于无纤维SiC材料.材料的Vickers硬度随Csf含量增加而降低.Csf/SiC样品的断裂韧性随Csf含量增加而逐渐增大,Csf含量为53%时,达到最大为5.5MPa·m1/2,与无纤维SiC样品相比,增加近2倍.  相似文献   
7.
短切碳纤维含量对Csf/SiC复合材料摩擦磨损性能的影响   总被引:2,自引:0,他引:2  
采用热压烧结法制备短切碳纤维增强碳化硅(short carbon fiber reinforced SiC composite,Csf/SIC)复合材料.采用销一盘式摩擦磨损试验测试不同短切碳纤维(Csf)含量的复合材料的干摩擦磨损性能,借助扫描电镜观察其磨痕形貌,分析不同Csf体积分数对复合材料摩擦磨损性能的影响.研究表明:由于碳纤维在复合材料中具有增强基体和固体润滑的作用,以及其自身良好的热传导性和低摩擦系数,因此,Csf/SiC复合材料的摩擦系数随Csf体积分数增大而不断降低;当Csf含量在42 vol.%以内时,复合材料的磨损率比无纤维SiC材料有大幅度减少,并且随着Csf体积分数增大而降低;但当Csf含量达到53 vol.%时,由于Csf含量高,导致纤维和基体之间的结合强度有所降低,造成复合材料的磨损率急剧增大.在本文研究范围内,含30 vol.% Csf复合材料具有最佳的摩擦磨损性能.  相似文献   
8.
通过研究微波功率、炭纤维预制体的密度和叠层层数对预制体微波加热效果的影响,分析了微波电场在预制体中的分布特点,提出了炭纤维预制体的微波加热模型,并对其损耗机制进行了探讨.结果表明:在(2450±50)MHz的微波波段,炭纤维预制体能吸收微波而加热,其损耗机制主要为偶极子极化、界面极化及电导损耗.  相似文献   
9.
在微波加热原理的基础上,根据具体的实验要求,介绍了一套自制的多模谐振腔微波高温加热真空系统。在该真空系统上进行了温度场测量;碳毡和碳化硅的微波加热试验;碳毡的气相致密化与碳化钨陶瓷的烧结试验。结果表明:该微波加热系统电场主要聚焦在中心区域,而且均匀分布;在气氛保护下,碳化硅的加热温度在20m in内达到1700℃,碳化钨的烧结致密度达到96%以上,在90小时内,碳毡的密度可达1.70g/cm3。  相似文献   
10.
微波热解CVI法制备C/C复合材料   总被引:1,自引:0,他引:1  
在传统CVI工艺的基础上,提出了一种新的炭/炭复合材料沉积致密化技术-微波热解CVI工艺.该工艺采用微波炉加热炭毡预制体,预制体自身发热,并通过控制微波场强分布和热传导过程产生温度梯度,加上微波对极性分子的极化作用和对热解反应和表面沉积反应的催化作用,使预制体从中心至表面逐层快速致密.通过考察炭毡预制体经微波加热后的温度场分布和沉积样品的体积密度变化和径向密度分布,观察材料的微观结构,分析了预制体的致密化过程.结果表明:微波热解CVI工艺在1075℃~1150℃的沉积温度下,以甲烷为碳源前驱体,经90 h的热解沉积,成功制备出体积密度为1.70 g/nc3的炭/炭复合材料,平均致密化速率达到0.0189g/(cm3·h);避免了表面结壳现象,热解炭沿着纤维表面层状生长;采用该工艺制备了结构均匀、主要为中等织构的热解炭.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号