首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2453篇
  免费   52篇
  国内免费   4篇
电工技术   142篇
综合类   2篇
化学工业   472篇
金属工艺   78篇
机械仪表   29篇
建筑科学   34篇
能源动力   72篇
轻工业   154篇
水利工程   1篇
石油天然气   1篇
无线电   248篇
一般工业技术   335篇
冶金工业   771篇
原子能技术   52篇
自动化技术   118篇
  2023年   10篇
  2021年   25篇
  2020年   19篇
  2019年   8篇
  2018年   24篇
  2017年   28篇
  2016年   46篇
  2015年   19篇
  2014年   48篇
  2013年   90篇
  2012年   60篇
  2011年   88篇
  2010年   56篇
  2009年   82篇
  2008年   89篇
  2007年   71篇
  2006年   70篇
  2005年   68篇
  2004年   55篇
  2003年   57篇
  2002年   61篇
  2001年   40篇
  2000年   37篇
  1999年   63篇
  1998年   295篇
  1997年   200篇
  1996年   124篇
  1995年   66篇
  1994年   72篇
  1993年   80篇
  1992年   42篇
  1991年   38篇
  1990年   28篇
  1989年   31篇
  1988年   23篇
  1987年   23篇
  1986年   19篇
  1985年   27篇
  1984年   17篇
  1983年   20篇
  1982年   17篇
  1981年   17篇
  1980年   15篇
  1979年   13篇
  1978年   18篇
  1977年   20篇
  1976年   37篇
  1974年   8篇
  1973年   7篇
  1969年   8篇
排序方式: 共有2509条查询结果,搜索用时 15 毫秒
1.
To enhance chemical stability and suppress of aggregation of magnetite nanoparticles (MNPs), which are used as a support for thermoresponsive copolymer immobilization, silica coating of the MNPs is applied via the electrooxidation method. Although the resulting silica coated-MNPs also formed aggregates, the size distribution of the aggregate shifted to smaller size range. Because of that, the surface area available for copolymer immobilization increased approximately 6.7 times at maximum as compared with that of the uncoated MNPs. It contributed to the increase of the amount of the immobilized copolymer on the silica-coated MNPs, which is approximately four times larger than that on the uncoated MNPs. Fe3O4 dissolution test confirmed enhancement of chemical stability of MNPs. The thermoresponsive copolymer immobilized on the silica-coated MNPs shows the ability to recycle Cu(II) ion from Cu(II) containing solution by changing temperature with significantly shorter time than those in other thermoresponsive adsorbents in gel form.  相似文献   
2.
3.
Mechanical properties of semi‐interpenetrating polymer network (semi‐IPN) elastomers consisting of chemical networks and self‐associative/non‐associative guest chains are demonstrated. Amorphous low Tg polyesters with thiol side groups (PE‐SH) are first synthesized by melt polycondensation. PE‐SH are then converted to polyesters containing COOH side groups (PE‐COOH) and amide side groups (PE‐amide) through Michael addition reaction of thiol groups with acrylic acid and acrylamide, respectively. Homogeneous semi‐IPN elastomers are obtained by thermal cross‐linking for bulk mixtures of PE‐COOH and PE‐amide in the presence of diepoxy cross‐linkers, where COOH and epoxy groups are reacted to form chemical cross‐links while the amide units form self‐complementary hydrogen bonds. Another sample containing non‐associative chains is also prepared by using polyester with N,N‐dimethylamide units, instead of PE‐amide. Dynamic mechanical analysis reveals that guest chain incorporation systematically brings plateau modulus reduction and a unique relaxation with higher tan δ value depending on the fraction and nature of guest chains. Tensile properties are also affected by the fraction and nature of guest chains; the incorporation of hydrogen bonded chains are beneficial to enhance breaking elongation and toughness without the sacrifice of maximum stress. The knowledge found in this work will be thus beneficial for creating tough soft materials with damping applications.  相似文献   
4.
The effect of Mo on the corrosion behavior of Ni20Cr–xMo alloys in an oxidizing chlorine-containing atmosphere using air mixed with the salt-vapor mixture of NaCl–KCl–CaCl2 at 570°C was investigated. The results revealed that the corrosion performance of the Ni20Cr alloys in the oxidizing chlorine atmosphere was improved by Mo addition of up to 3 wt%. The Mo-free alloy formed a potassium chromate during corrosion as a result of the reaction between the Cr2O3 scale and KCl vapor. The chromate formation increased the chlorine potential at the scale surface and induced the breakdown of the protective Cr2O3 scale, resulting in internal chromium chloride precipitates and a Cr-depleted zone. In contrast, the presence of Mo resulted in the formation of a NiO scale, which did not react with the salt vapors and, therefore, prevented the formation of chromates. The beneficial effect of Mo on the high-temperature chlorination of Ni–Cr alloys in salt-vapor-containing atmospheres was ascribed to the suppression of chlorine generation due to NiO scale formation.  相似文献   
5.
Computational Visual Media - Quantitatively evaluating the psychological and perceptual effects of objects is an important issue, but is difficult. In cognitive studies, the psychological potential...  相似文献   
6.
Heme can be removed from a number of native hemoproteins, thus forming corresponding apoproteins, each of which provides a site for binding of a metal complex. In one example, myoglobin, an O2 storage protein, can be reconstituted with iron porphycene to dramatically enhance the O2 affinity. Although it is known that myoglobin has poor enzymatic activity, the insertion of iron corrole or iron porphycene into apomyoglobin increases its H2O2-dependent peroxidase/peroxygenase activities. Furthermore, reconstitution with manganese porphycene promotes hydroxylation of an inert C H bond. It is also of interest to insert a non-porphyrinoid complex into an apoprotein. A cavity of apocytochrome c has been found to bind a diiron carbonyl complex, serving as a functional model of diiron hydrogenase. Aponitrobindin has a rigid β-barrel structure that provides an excellent cavity for covalently anchoring a metal complex. A rhodium complex embedded in the cavity of genetically modified nitrobindin has been found to promote stereoselective polymerization of phenylacetylene.  相似文献   
7.
In this study, new rGO-silica xerogel nanocomposites (SX-rGO) and its glass fiber reinforced composites (GFR-SX-rGO) were prepared, and its microstructure and thermal properties were evaluated. The raw material was a mixed dispersion prepared by adding 0.01–2.5?wt% of reduced graphene oxide (rGO) to waterglass (6% SiO2). A hydrogel was prepared via sol-gel reaction of this raw material, which was then immersed in hydrochloric acid, hydrophobized in a siloxane/2-propanol reaction system, and then dried at ambient pressure to obtain a hydrophobic carbon-silica xerogel composite. The obtained samples were characterized by N2 physisorption (at 77?K), solid 29Si Magic angle spinning nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, hydrophobicity, and thermal conductivity. It was found that as the amount of rGO was increased, the specific surface area of the nanocomposite decreased by ~25% from 535 to 403?cm2/g, and the average pore size and pore volume were almost halved. The thermal decomposition temperature of the SX-rGO was increased markedly by the addition of rGO. Moreover, the GFR-SX-rGO-0.5 showed low density (0.208?g/cm3), high contact angle (146°) and low thermal conductivity (0.0199?W/mK).  相似文献   
8.
Monoacylglycerols (MAG) are impurities present in biodiesel as a result of incomplete reactions. MAG often solidify in biodiesel even at room temperature because of their high melting points. This worsens the cold-flow properties such as the cloud point and pour point. We hypothesized that several types of MAG solidify simultaneously; therefore, we performed differential scanning calorimetry of binary mixtures of MAG to elucidate their interactions during solidification. Three thermodynamic formulas were then applied to the experimental results: (1) non-solid-solution, (2) solid-solution, and (3) compound formation models. Binary mixtures of MAG showed complicated liquidus curves with multiple upward convex shapes, with which only the compound formation model fitted well. This model was applied to multicomponent mixtures that consisted of MAG and fatty acid methyl esters (FAME) as surrogate biodiesel fuels. We confirmed that the model still worked well. The results show that the compound formation model has good potential for predicting the cold-flow properties of biodiesel.  相似文献   
9.
10.
Terpendole E is first natural product found to inhibit mitotic kinesin Eg5, but its inhibitory mechanism remains to be revealed. Here, we report the effects of terpendole E and 11ketopaspaline (a new natural terpendole E analogue) on the Eg5–microtubule interaction and in several Eg5 mutants. 11‐Ketopaspaline is a shunt product from terpendole E, and it shows potent inhibitory activity against the microtubule‐stimulated ATPase activity of Eg5. Unlike other Eg5 inhibitors, such as S‐trityl‐L ‐cysteine (STLC) and GSK‐1, both terpendole E and 11‐ketopaspaline only partially inhibited Eg5–microtubule interaction. Furthermore, terpendole E and 11‐ketopaspaline inhibited several Eg5 mutants that are resistant to STLC (Eg5D130A, Eg5L214A) or GSK‐1 (Eg5I299F, Eg5A356T), but with the same extent of inhibition against wild‐type Eg5. Because Eg5D130A and Eg5L214A show cross‐resistance to most known Eg5 inhibitors, which bind the L5 loop, these results suggest that terpendole E and its analogues have a different binding site and/or inhibitory mechanism to those for L5 loop‐binding type Eg5 inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号