首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   691篇
  免费   27篇
  国内免费   96篇
电工技术   17篇
综合类   102篇
化学工业   75篇
金属工艺   90篇
机械仪表   25篇
建筑科学   22篇
矿业工程   2篇
能源动力   12篇
轻工业   27篇
水利工程   24篇
石油天然气   28篇
无线电   101篇
一般工业技术   143篇
冶金工业   19篇
原子能技术   17篇
自动化技术   110篇
  2024年   3篇
  2023年   10篇
  2022年   24篇
  2021年   57篇
  2020年   11篇
  2019年   19篇
  2018年   13篇
  2017年   15篇
  2016年   13篇
  2015年   19篇
  2014年   18篇
  2013年   16篇
  2012年   38篇
  2011年   80篇
  2010年   35篇
  2009年   60篇
  2008年   42篇
  2007年   41篇
  2006年   38篇
  2005年   38篇
  2004年   18篇
  2003年   13篇
  2002年   16篇
  2001年   22篇
  2000年   14篇
  1999年   17篇
  1998年   19篇
  1997年   25篇
  1996年   18篇
  1995年   11篇
  1994年   5篇
  1993年   8篇
  1992年   21篇
  1991年   10篇
  1990年   3篇
  1989年   3篇
  1982年   1篇
排序方式: 共有814条查询结果,搜索用时 31 毫秒
1.
All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI~-and FSI~-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI~-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm~(-2),while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g~(-1),with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.  相似文献   
2.
Pushing popular contents to the edge of the network can meet the growing demand for data traffic, reduce latency and relieve the pressure of the backhaul. However, considering the limited storage space of the base stations, it is impossible to cache all the contents, especially in ultra-dense network ( UDN). Furthermore, the uneven distribution of mobile users results in load imbalance among small base stations (SBSs) in both time and space, which also affects the caching strategy. To overcome these shortcoming, the impact of the changing load imbalance in UDN was investigated, and then a dynamic hierarchical collaborative caching (DHCC) scheme was proposed to optimize latency and caching hit rate. The storage of the SBS is logically divided into the independent caching layer and the collaborative caching layer. The independent caching layer caches the most popular contents for local users爷interest, and the collaborative caching layer caches contents as much as possible for the benefit of content diversity in the region. Different SBSs have respective storage space layer division ratios, according to their real-time traffic load. For SBSs with heavy load, the independent caching layers are allocated with more space. Otherwise, the collaborative caching layers could store more contents with larger space. The simulation results show that, DHCC improved both transmission latency and hit rate compared with existing caching schemes.  相似文献   
3.
Exploring alternative biomedical use of traditional drugs in different disease models is highly important as it can reduce the cost of drug development and overcome several critical issues of traditional chemodrugs such as low chemotherapeutic efficiency,severe side effect,and drug resistance.Disulfiram(DSF),a clinically approved alcohol-aversion drug,was recently demonstrated tofeature tumor-growth suppression effect along with the co-administration of Cu2+species,but direct Cu2+administration mode might cause severe toxicity originating from low Cu2+accumulation into the tumor and nonspecific Cu2+distribution-induced cytotoxicity.Based on the intriguing drug-delivery performance of nanoscale metal-organic frameworks(MOFs),we herein construct HKUST nMOFs as the Cu2+self-supplying nanocarriers for efficient delivery of the D SF drug.The mildly acidic condition of tumor microenvironment initially triggered the release of Cu ions from HKUST nMOFs,which further reacted with the encapsulated DSF toform toxic Cu(DDTC)2(activation)for tumor chemotherapy.Especially,during the Cu(DDTC)2 complexation,Cu+species were formed concomitantly,triggering the intratumoral nanocatalytic therapy for the generation of reactive oxygen species to synergistically destroying the tumor cells/tissue.As a result,synergetic tumor-responsive chemotherapy and nanocatalytic therapy are enabled by DSF@HKU ST nanodrugs,as demonstrated by the dominant anticancer efficacy with satisfied biocompatibility both in vitro and in vivo.The present work offers a sophisticated strategy for tumor-responsive nontoxic-to-toxic therapeutic with high biocompatibility.  相似文献   
4.
Low-carbon energy technology (LC) innovation contributes to both environmental protection and economic development. Using the panel data of 30 provinces/autonomous regions/municipalities in China from 1998 to 2017, this paper constructs a two-layer logarithmic mean Divisia index (LMDI) model to uncover the factors influencing the variation of the innovation of LC in China’s industrial sectors, including the alternative energy production technology (AEPT) and the energy conversation technology (ECT). The results show that China’s industrial LC patent applications rapidly increased after 2005 and AEPT patent applications outweighed ECT patent applications all the time with a gradually narrowing gap. Low-carbon degree played the dominant role in promoting the increase in China’s industrial LC patent applications, followed by the economic scale, R&D (research and development) efficiency, and R&D share. Economic structure contributed to the increases in LC patent applications in the central and the western regions, while led to the decreases in the eastern region, the north-eastern region, and Chinese mainland Xizang(Tibet) Autonoomous Region is not considered due to lack of data. This note applies to the entire article.. Low-carbon degree and economic scale were two main contributors to the growths of both industrial AEPT patent applications and ECT patent applications in Chinese mainland and the four regions. Several policy recommendations are made to further promote industrial innovation in China.  相似文献   
5.
The exploitation of new sulfiphilic and catalytic materials is considered as the promising strategy to overcome severe shuttle effect and sluggish kinetics conversion of lithium polysulfides within lithium-sulfur batteries.Herein,we design and fabricate monodisperse VN ultrafine nanocrystals immobilized on nitrogen-doped carbon hybrid nanosheets(VN@NCSs)via an one-step in-situ selftemplate and self-reduction strategy,which simultaneously promotes the interaction with polysulfides and the kinetics of the sulfur conversion reactions demonstrated by experimental and theoretical results.By virtue of the multifunctional structural features of VN@NCSs,the cell with ultrathin VN@NCSs(only 5 pm thickness)modified separator indicates improved electrochemical performances with long cycling stability over 1,000 cycles at 2 C with only 0.041%capacity decay per cycle and excellent rate capability(787.6 mAh g-1 at 10 C).Importantly,it delivers an areal reversible capacity of 3.71 mAh cm-2 accompanied by robust cycling life.  相似文献   
6.
Carbonates have been known to act as hydrocarbon source rocks, but their basic geochemical and associated hydrocarbon generation characteristics remain not well understood as they occur with argillaceous source rocks in most cases, and the hydrocarbon generation from each rock type is di cult to distinguish, forming one of puzzling issues within the field of petroleum geology and geochemistry. To improve the understanding of this critical issue, this paper reviews recent advances in this field and provides a summary of key areas that can be studied in future. Results show that carbonate source rocks are generally associated with high-salinity environments with low amounts of terrestrial inputs and low dissolved oxygen contents. Petrographically, these source rocks are dark gray or black, fine-grained, stratified, and contain bacterial and algal bioprecursors along with some other impurities. They generally have low organic matter contents, although these can vary significantly in di erent cases(e.g., the total organic carbon contents of marine and lacustrine carbonate source rocks in China are generally 0.1%–1.0% and 0.4%–4.0%, respectively). These rocks contain type I and type II kerogen, meaning there is a lack of vitrinites. This means that assessment of the maturity of the organic matter in these sediments needs to use non-traditional techniques rather than vitrinite reflectance. In terms of molecular geochemistry, carbonate source rocks have typical characteristics indicative of generally reducing and saline environments and lower organism-dominated bioprecursors of organic matter, e.g., high contents of sulfur compounds, low Pr/Ph ratios, and dominance of n-alkanes. Most of the carbonate source rocks are typically dominated by D-type organic facies in an oxidized shallow water mass, although high-quality source rocks generally contain A-and B-type organic facies in saline lacustrine and marine-reducing environments, respectively. The hydrocarbon generation model for the carbonate source rocks can involve early, middle, and late stages, with a diversity of hydrocarbons within these rocks, which can be aggregated, adsorbed, enclosed within minerals, or present as inclusions. This in turn implies that the large-scale hydrocarbon expulsion from these rocks is reliant on brittle deformation caused by external forces. Finally, a number of aspects of these source rocks remain unclear and need further study, including the e ectiveness of carbonates as hydrocarbon source rocks, bioprecursors, and hydrocarbon generation models of carbonate source rock, and the di erences between marine and lacustrine carbonate source rocks.  相似文献   
7.
通过对在地宫上建轻工展销楼工程设计的结构方案与构造措施的介绍,提出了在地下建筑物上建楼的一种设计思路和设计方法。  相似文献   
8.
Copper-based catalysts were widely used in the heterogeneous selective hydrogenation of ethylene car-bonate (EC),a key step in the indirect conversion of CO2 to methanol.However,a high H2/EC molar ratio in feed is required to achieve favorable activity and the methanol selectivity still needs to be improved.Herein,we fabricated a series of Pt-modulated Cu/SiO2 catalysts and investigated their catalytic perfor-mance for hydrogenation of EC in a fixed bed reactor.By modulating the Pt amount,the optimal 0.2Pt-Cu/SiO2 catalyst exhibited the highest catalytic performance with ~99% EC conversion,over 98% selectiv-ity to ethylene glycol and 95.8% selectivity to methanol at the H2/EC ratio as low as 60 in feed.In addition,0.2Pt-Cu/SiO2 catalyst showed excellent stability for 150 h on stream over different H2/EC ratios of 180-40.It is demonstrated a proper amount of Pt could significantly lower the H2/EC molar ratio,promote the reducibility and dispersion of copper,and also enhance surface density of Cu+ species.This could be due to the strong interaction of Cu and Pt induced by formation of alloyed Pt single atoms on the Cu lattice.Meanwhile,a relatively higher amount of Pt would deteriorate the catalytic activity,which could be due to the surface coverage and aggregation of active species.These findings may enlighten some fundamen-tal insights for further design of Cu-based catalysts for the hydrogenation of carbon-oxygen bonds.  相似文献   
9.
The interaction of bubbles is the key to understand gas–liquid bubbling flow. Two-dimensional axis-symmetry computational fluid dynamics simulations on the interactive bubbles were performed with VOF method,which was validated by experimental work. It is testified that several different bubble interactive behaviors could be acquired under different conditions. Firstly, for large bubbles(d: 4, 6, 8, 10 mm), the trailing bubble rising velocity and aspect ratio have negative correlations with liquid viscosity and surface tension. The influences of viscosity and surface tension on leading bubble are negligible. Secondly, for smaller bubbles(d: 1, 2 mm), the results are complicated. The two bubbles tend to move together due to the attractive force by the wake and the potential repulsive force. Especially for high viscous or high surface tension liquid, the bubble pairs undergo several times acceleration and deceleration. In addition, bubble deformation plays an important role during bubble interaction which cannot be neglected.  相似文献   
10.
The 3rd generation catalytic cracking naphtha selective hydrodesulfurization(RSDS-III) technology developed by RIPP included the catalysts selective adjusting(RSAT) technology, the development of new catalysts and optimized process conditions. The pilot plant test results showed that the RSDS-III technology could be adapted to different feedstocks. The sulfur content dropped from 600 μg/g and 631 μg/g to 7 μg/g and 9 μg/g, respectively, by RSDS-III technology when feed A and feed B were processed to meet China national V gasoline standard, with the RON loss of products equating to 0.9 units and 1.0 unit, respectively. While the feed C with a medium sulfur content was processed according to the full-range naphtha hydrotreating technology, the sulfur content dropped from 357 μg/g in the feed to 10 μg/g in gasoline, with the RON loss of product decreased by only 0.6 units. Thanks to the high HDS activity and good selectivity of RSDS-III technology, the ultra-low-sulfur gasoline meeting China V standard could be produced by the RSDS-III technology with little RON loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号