首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1029篇
  免费   63篇
  国内免费   3篇
电工技术   23篇
综合类   1篇
化学工业   247篇
金属工艺   14篇
机械仪表   23篇
建筑科学   32篇
矿业工程   1篇
能源动力   84篇
轻工业   78篇
水利工程   5篇
石油天然气   5篇
无线电   171篇
一般工业技术   219篇
冶金工业   82篇
原子能技术   2篇
自动化技术   108篇
  2024年   2篇
  2023年   20篇
  2022年   31篇
  2021年   50篇
  2020年   45篇
  2019年   46篇
  2018年   44篇
  2017年   34篇
  2016年   51篇
  2015年   27篇
  2014年   44篇
  2013年   73篇
  2012年   57篇
  2011年   69篇
  2010年   52篇
  2009年   39篇
  2008年   41篇
  2007年   52篇
  2006年   37篇
  2005年   30篇
  2004年   31篇
  2003年   19篇
  2002年   23篇
  2001年   7篇
  2000年   10篇
  1999年   13篇
  1998年   22篇
  1997年   27篇
  1996年   11篇
  1995年   12篇
  1994年   9篇
  1993年   7篇
  1992年   2篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1977年   2篇
  1976年   6篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有1095条查询结果,搜索用时 78 毫秒
1.
2.
Synthesis of novel nonionic surfactants has attracted attention of synthetic chemists due to the issues of the currently used commercial surfactants. The synthesis of three biocompatible triazole-based nonionic surfactants is reported for nanovesicular drug loading. The surfactants were synthesized in a three-step reaction and characterized using 1HNMR and mass spectroscopy techniques. They were investigated for their critical micelle concentration (CMC) using a UV–Visible spectrophotometer. Their biocompatibility was investigated against cell culture and in blood. All the synthesized nonionic surfactants were further explored for their nanovesicular drug loading using clarithromycin as a model hydrophobic drug. Nonionic surfactants revealed lower CMC in 35–45 μM and were less hemolytic and cytotoxic. They were capable of self-assembling in nanosize niosomal vesicles encapsulating increased amounts of drug. The results suggest the synthesized nonionic surfactants as biocompatible nanotechnology-based drug-delivery vehicles.  相似文献   
3.
4.
Persistent scatterer interferometry (PSI) is a major advancement in radar interferometry for detecting and monitoring land deformation. PSI is the most advanced class of differential interferometric synthetic aperture radar (DInSAR) techniques. The technique conquers the main drawbacks of the conventional DInSAR technique by identifying radar targets having stable backscattering characteristics in time. These targets are termed as persistent scatterers (PSs). The higher the number of PSs for a study area the higher the accuracy of the results will be, which is most common for deformation analysis in urban areas. However, for non-urban or highly de-correlated areas, PSs density collapses significantly, which needs to increase for optimal results. For this purpose, partially coherent/distributed scatterers (DSs) are being exploited in addition to the PSs. The field surface of this study is one of the copper-rich mining belts in India, which consists of two major underground metal mines. Scatterer characterziation of the field surface under study suggests that most of the scatterers are DSs and very few scatterers under the influence of the mining zone are PSs. In addition to this, a preliminary investigation of deformation characteristics of the field surface under study reveals that the spatial extent of deformation is small/localized along with slow and non-linear deformation. Keeping in view scatterer and deformation characteristics of the field surface under study, in this research paper, a Quasi-Persistent Scatterer based PSI approach has been applied using high-resolution TerraSAR-X interferometric data stack (10 images) to generate deformation time series and deformation velocity. Furthermore, results obtained from the applied PSI approach and ground-based observations (using GNSS) have shown good agreement with each other, in the order of ?5.20?mm/year (LOS) and ?5.38?mm/year (subsiding), respectively.  相似文献   
5.
Bhogal  Sangeeta  Sharma  Gaurav  Kumar  Amit  Sharma  Shweta  Naushad  Mu.  Alam  Manawwer  Stadler  Florian J. 《Topics in Catalysis》2020,63(11-14):1272-1285
Topics in Catalysis - In the present study, Ag2O–Al2O3–ZrO2 based trimetallic oxide nanocatalyst was designed using simple microwave assisted reduction method. It was characterized...  相似文献   
6.
Mobile Networks and Applications - In Wireless Sensor Networks (WSNs), energy-efficient routing is required to conserve the scarce resources of these networks. Various energy-efficient routing...  相似文献   
7.
A three-dimensional (3-D) transient numerical model of an alkaline water electrolysis (AWE) cell with potassium hydroxide solution is developed by rigorously accounting for the hydrogen and oxygen evolution reactions and resulting species and charge transport through various AWE components. First, the AWE model is experimentally validated against a polarization curve corresponding to a wide range of currents as high as 2.0 A·cm?2. In general, the simulation results compare well with the measured data and further reveal the operating characteristics of AWE cells, showing key distributions of solid/electrolyte potentials and multidimensional contours of reactant and product concentrations at various current densities. In particular, the contribution of hydroxide ion (OH?) diffusion to the ohmic losses through porous electrodes and a porous separator are quantitatively examined at low and high electrolyte flow rates. The present full 3-D AWE model provides a basic understanding of the electrochemical and transport phenomena and can be further applied to practical large-scale AWE cell and stack geometries for grid-scale hydrogen production.  相似文献   
8.
A novel process for the production of superabsorbent materials (hydrogels) from bacterial cellulose (BC) was developed. Prior to crosslinking with a water‐soluble polyethylene glycol diacrylate (PEGDA), BC was first carboxymethylated and functionalized with glycidyl methacrylate. The degree of crosslinking influenced the swelling properties of the hydrogels. The use of greater amounts of PEGDA enhanced the formation of a thicker macromolecular network containing fewer capillary spaces in the crosslinked gel. The maximum water retention value of the hydrogels containing 2.5–3.5 mmol of carboxyl groups per gram of gel reached 125 g g?1 in distilled water, and 29 g g?1 in saline (0.9% NaCl solution). The highly porous hydrogel architecture with a pore size of 350–600 µm created a high specific surface area. This enables rapid mass penetration in superabsorbent applications. The superabsorbent hydrogels reached 80% of their maximum water absorption capacity in 30 min. © 2018 Society of Chemical Industry  相似文献   
9.
A Monte Carlo source model using PENELOPE was developed to investigate different tritiated metals in order to design a better radioisotope source for betavoltaic batteries. The source model takes into account the self‐absorption of beta particles in the source which is a major factor for an efficient source design. The average beta energy, beta flux, source power output, and source efficiency were estimated for various source thicknesses. The simulated results for titanium tritide with 0° and 90° angular distributions of beta particles were validated with experimental results. The importance of the backscattering effect due to isotropic particle emission was analyzed. The results showed that the normalized average beta energy increases with the source thickness, and it reaches peak energy depending on the density and the specific activity of the source. The beta flux and power output also increase with increasing source thickness. However, the incremental increase in beta flux and power output becomes minimal for higher thicknesses, as the source efficiency decreases significantly at higher thicknesses due to the self‐absorption effect. Thus, a saturation threshold is reached. A low‐density source material such as beryllium tritide provided a higher power output with higher efficiency. A maximum power output of approximately 4 mW/cm3 was obtained for beryllium tritide with SiC. A form factor approach was used to estimate the optimum source thickness. The optimum source thickness was found near the thickness where the peak beta particle average energy occurs.  相似文献   
10.

Propane (R290), a hydrocarbon refrigerant, is an excellent choice of cooling fluids for use in refrigeration and air conditioning systems considering the environmental point of view and system performance. The phase transition phenomenon and structural and dynamic properties of R290 were analyzed through a molecular dynamics (MD) simulation. The densities, isobaric heat capacities and viscosities were computed and the variations of density, volume, potential energy and the nucleation process were examined to investigate the effects of condensation temperature on the phase transition rate. The mean square displacement and velocity autocorrelation function for different temperatures were simulated for dynamical analysis. Radial distribution functions were investigated to get insight into the structural analysis at the atomic level. Shear viscosity and isobaric heat capacity obtained by the present simulation showed a good agreement with the REFPROP data. The structural analysis revealed that the phase transition of R290 did not affect its intramolecular structure.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号