首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   20篇
电工技术   2篇
化学工业   112篇
金属工艺   22篇
机械仪表   17篇
建筑科学   7篇
矿业工程   2篇
能源动力   10篇
轻工业   6篇
水利工程   2篇
无线电   41篇
一般工业技术   76篇
冶金工业   3篇
原子能技术   4篇
自动化技术   92篇
  2023年   3篇
  2022年   3篇
  2021年   21篇
  2020年   5篇
  2019年   11篇
  2018年   17篇
  2017年   13篇
  2016年   21篇
  2015年   16篇
  2014年   26篇
  2013年   35篇
  2012年   25篇
  2011年   42篇
  2010年   21篇
  2009年   32篇
  2008年   20篇
  2007年   17篇
  2006年   14篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有396条查询结果,搜索用时 15 毫秒
1.
Fine-tuning of the scaffolds structural features for bone tissue engineering can be an efficient approach to regulate the specific response of the osteoblasts. Here, we loaded magnetic nanoparticles aka superparamagnetic iron oxide nanoparticles (SPIONs) into 3D composite scaffolds based on biological macromolecules (chitosan, collagen, hyaluronic acid) and calcium phosphates for potential applications in bone regeneration, using a biomimetic approach. We assessed the effects of organic (chitosan/collagen/hyaluronic acid) and inorganic (calcium phosphates, SPIONs) phase over the final features of the magnetic scaffolds (MS). Mechanical properties, magnetic susceptibility and biological fluids retention are strongly dependent on the final composition of MS and within the recommended range for application in bone regeneration. The MS architecture/pore size can be made bespoken through changes of the final organic/inorganic ratio. The scaffolds undertake mild degradation as the presence of inorganic components hinders the enzyme catalytic activity. In vitro studies indicated that osteoblasts (SaOS-2) on MS9 had similar cell behaviour activity in comparison with the TCP control. In vivo data showed an evident development of integration and resorption of the MS composites with low inflammation activity. Current findings suggest that the combination of SPIONs into 3D composite scaffolds can be a promising toolkit for bone regeneration.  相似文献   
2.
3.
The fashionable Parr–Pearson (PP) atoms-in-molecule/bonding (AIM/AIB) approach for determining the exchanged charge necessary for acquiring an equalized electronegativity within a chemical bond is refined and generalized here by introducing the concepts of chemical power within the chemical orthogonal space (COS) in terms of electronegativity and chemical hardness. Electronegativity and chemical hardness are conceptually orthogonal, since there are opposite tendencies in bonding, i.e., reactivity vs. stability or the HOMO-LUMO middy level vs. the HOMO-LUMO interval (gap). Thus, atoms-in-molecule/bond electronegativity and chemical hardness are provided for in orthogonal space (COS), along with a generalized analytical expression of the exchanged electrons in bonding. Moreover, the present formalism surpasses the earlier Parr–Pearson limitation to the context of hetero-bonding molecules so as to also include the important case of covalent homo-bonding. The connections of the present COS analysis with PP formalism is analytically revealed, while a numerical illustration regarding the patterning and fragmentation of chemical benchmarking bondings is also presented and fundamental open questions are critically discussed.  相似文献   
4.
Pristine and (SiC+Te)-added MgB2 powders, green and spark plasma sintered (SPS) compacts were investigated from the viewpoint of quasi-static and dynamic (Split-Hopkinson Pressure Bar, SHPB) compressive mechanical properties The amount of the additive (SiC+Te) was selected to be the optimum one for maximization of the superconducting functional parameters. Pristine and added MgB2 show very similar compressive parameters (tan δ, fracture strength, Vickers hardness, others) and fragment size in the SHPB test. However, for the bulk SPSed samples the ratio of intergranular to transgranular fracturing changes, the first one being stronger in the added sample. This is reflected in the quasi-static KIC that is higher for the added sample. Despite this result, sintered samples are brittle and have roughly similar fragmentation behavior as for brittle engineering ceramics. In the fragmentation process, the composite nature of our samples should be considered with a special focus on MgB2 blocks (colonies) that show the major contribution to fracturing. The Glenn-Chudnovsky model of fracturing under dynamic load provides the closest values to our experimental fragment size data.  相似文献   
5.
Variational quantitative binding–conformational analysis for a series of anti-HIV pyrimidine-based ligands is advanced at the individual molecular level. This was achieved by employing ligand-receptor docking algorithms for each molecule in the 1,3-disubstituted uracil derivative series that was studied. Such computational algorithms were employed for analyzing both genuine molecular cases and their simplified molecular input line entry system (SMILES) transformations, which were created via the controlled breaking of chemical bonds, so as to generate the longest SMILES molecular chain (LoSMoC) and Branching SMILES (BraS) conformations. The study identified the most active anti-HIV molecules, and analyzed their special and relevant bonding fragments (chemical alerts), and the recorded energetic and geometric docking results (i.e., binding and affinity energies, and the surface area and volume of bonding, respectively). Clear computational evidence was also produced concerning the ligand-receptor pocket binding efficacies of the LoSMoc and BraS conformation types, thus confirming their earlier presence (as suggested by variational quantitative structure-activity relationship, variational-QSAR) as active intermediates for the molecule-to-cell transduction process.  相似文献   
6.

Romanian policy makers have to perceive that human intervention on river basins land cover is influencing rainfall-runoff relation and the used methodology cannot accurately estimate watershed surface flow transformations. Global water cycles and energy fluxes understanding is leading to better predictions of land atmosphere interaction and local hydro-climates evolution. The water transfer time determination from rainfall to runoff needs accurate measurements of river basins hydrological parameters. Here, we analyzed and compared the lag time value results of two different methodologies (curve number and rational methodology) used for 54 Romanian small catchment areas study. The focus of this paper is the lag time evaluation and interpretation for an effective implementation of the best methodology approach in the Romanian geographical space. Our research in small river basins was developed using remote sensing technology maps, GIS and environmental datasets in combination with field work on every drainage basin in order to assess the specific morphological features and validate the land cover typology. We found that Soil Conservation Service - Curve Number (SCS-CN) method is widely used according to USA landscape features classification, but not necessarily applicable to Romanian river basins characteristics. Our results show how the official Romanian rational methodology national standard (RNS) can be improved and the limits of SCS-CN method.

  相似文献   
7.
8.
Here in, we describe an ultrafast, single-step microwave irradiation route (MW) to prepare graphene supported Pt nanoparticles, during which the small Pt nanoparticles are distributed uniformly on a reduced graphene oxide surface. This route provides evident advantages namely low cost, easiness, low time consuming and high yield in comparison to actual chemical methods to develop efficient Pt/rGO catalyst with Pt content close to state-of-the-art commercial composition. The structure and composition of prepared samples have been studied by specific techniques, while the electrocatalytic stability has been studied using ex-situ and in-situ measurements. High performance and electrochemically stable catalyst for PEM fuel cells was developed using the sample with highest loading and good dispersion. The fabricated Pt-rGO-based MEA was investigated for durability under fuel starvation in comparison with commercial Pt/C-based MEA. The electrocatalytic activity was investigated and the electrochemical response revealed the higher stability during accelerated degradation test under fuel starvation in comparison with commercial Pt/C. This study promotes the applicability of described preparation method to noble or transition metal nanoparticles embedded on graphene-based materials.  相似文献   
9.
This work is focused on investigation of thermal, structural, optical, magnetic, and magneto-optical properties of novel titanium phosphate-tellurite glass applied as Faraday rotators. The glass belonging to the system 35Li2O–10Al2O3–5TiO2–45P2O5–5TeO2 was prepared by a nonconventional wet route of raw materials processing, followed by melting-quenching-annealing steps. Some important physical properties of the investigated glass have been measured and calculated, providing knowledge related to glass compactness, electronic structure, glass forming capability, etc. XRD analysis evidenced an amorphous network structure of the investigated glass. The optical absorption in the Vis domain is mainly due to Ti3+ ions and Te2 clusters formed during the glass melting process. A relatively low optical absorption is noticed over 600 nm that activates a significant Faraday magneto-optical effect. Photoluminescence bands in the blue, red, and infrared domains are observed, caused by Te2 clusters formed during the glass melting process. The magnetization in dependency on applied magnetic field reveals a complex behavior of the glass, depending on temperature. Thus, it is found a ferromagnetic behavior up to 2000 Oe, a paramagnetic component up to 40 000 Oe, followed by a diamagnetic one over 40 000 Oe. Faraday rotation angle and Verdet constant values in the visible domain are correlated with the reduced TeO2 content of the glass.  相似文献   
10.
This paper presents a facile and economic development of dye‐sensitized solar cells using a nonprecious counter electrode made from ball‐milled tellurium‐doped graphene (Te‐Gr) and a natural sensitizer extracted from Calotropis gigantea leaves. The prepared materials were characterized using various techniques, such as Raman spectroscopy, X‐ray diffraction (XRD), atomic force microscopy (AFM), impedance spectroscopy, and scanning electron microscopy with built‐in energy‐dispersive X‐ray spectroscopy (SEM with EDS). The electrochemical activity of the produced counter electrodes and the impedance of the fabricated cells were examined and discussed to devise plans for future enhancement of cell performance. A clear pattern of improvement was found when using cost‐effective Te‐Gr relative to the costly platinum counter electrodes, especially when compared with cells employing another natural sensitizer. The results show approximately 51% enhancement over chlorophyll‐based cells made from spinach, where the added advantage in our approach is the utilization of an abundant plant extract with little nutritional appeal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号