首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   11篇
建筑科学   12篇
矿业工程   1篇
  2015年   7篇
  2014年   3篇
  2012年   2篇
  2011年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
为研究结构面岩体在压剪荷载作用下的声发射特征和规律,利用水泥砂浆作为模型材料制作具有不同起伏高度的不规则锯齿形结构面,研究不同起伏高度、不同剪切速率和不同法向压力下声发射参数的变化规律和发生机制。试验结果表明:结构面剪切时理想的累积撞击曲线可以划分为平静期、缓慢上升期和急剧上升期3个阶段;随结构面起伏高度的增大,发生宏观剪切破坏时能量率峰值变大、累积撞击数变小;随剪切速率的增大,能量率曲线和撞击率曲线在剪切过程中波动性增强,能量率峰值、撞击率峰值和累积能量随剪切速率的增大有减小的趋势;声发射参数随法向压力变化规律性不强,但随法向压力的增大,破坏时对应的能量率峰值和累积能量有减小的趋势,撞击率峰值和累积撞击数有增大的趋势。研究成果可为声发射技术用于监测和预报现场结构面岩体的静力或动力剪切破坏提供指导。  相似文献   
2.
为研究节理裂隙岩体中节理位置和尺寸对岩体综合抗剪强度的影响,以水泥砂浆作为模型材料,通过在试件的不同位置预制相同长度的节理裂隙和相同位置预制不同长度的节理裂隙,进行不同法向压力下3种具有不同起伏角的节理面剪切试验。试验结果表明:当节理位置和长度一定时其抗剪强度随法向压力增加而增加;对于同一节理裂隙,当其位于试件中间时抗剪强度和黏聚力最小,位于试件后端时抗剪强度和黏聚力最大,位于试件前端时介于两者之间;内摩擦角随节理位置的变化规律不明显;当节理裂隙位置固定时,节理裂隙越长,抗剪强度和黏聚力越低,且抗剪强度随节理长度的增加呈近乎线性的减小。节理位置和尺寸对综合抗剪强度的影响可能由于节理、岩桥的强度参数及岩桥内部损伤劣化程度共同作用所致,现场节理岩体的抗剪强度取值应考虑节理的位置影响。  相似文献   
3.
 采用高强石膏配制板裂化模型试样,选用铝棒制作预应力锚杆模型,通过一侧约束条件下的单轴压缩试验,研究板裂化模型试样的预应力锚杆锚固效应。试验结果表明:加锚试样的峰值强度、残余强度及弹性模量均有不同程度的提高,试样峰后侧向变形显著减小,且随着预应力值的增大效果更为显著;与无锚试件岩板压折、岩片弹射的失稳破坏现象相比,加锚试件保持了较好的完整性,局部发生岩板断裂、脱落现象;试样变形破坏过程中,锚杆轴向应力变化分为线性缓慢上升期、非线性增长期和急剧上升期3个阶段,锚杆轴向应力的变化规律反映了其自身工作机制及板裂化模型试样变形特征。分析锚固机制认为,预应力锚杆的施加不仅有效降低了预制裂隙尖端拉应力集中程度,体现出抑制裂隙扩展的止裂作用,而且将试样劈裂形成的岩板加固为整体,有效抑制了岩板向临空面的屈曲变形,进而提高了试样的临界失稳荷载值。最后,基于试验结果的认识,提出针对板裂化围岩的“及时支护、区域控制及重点加固”的锚喷支护控制策略。  相似文献   
4.
土与结构相互作用的可视化剪切试验装置研制及应用   总被引:1,自引:0,他引:1  
 土与结构的相互作用是岩土工程中普遍存在的力学问题,在已有大型直剪试验系统平台上,设计局部可透视的刚性剪切盒和数据采集分析系统,研制相应的设备。在接触面力学参数可靠获取的基础上,通过高清数码摄像实时采集剪切试验过程中接触面剪切带的数字图像,利用GeoPIV分析获得剪切带土砾的变形和剪切带的厚度,实现土与结构接触面直剪试验剪切带变形的可视化与定量化。以三峡库区堆积体滑坡工程为背景,开展不同含水率条件下土石混合体与混凝土接触的剪切试验,得到接触面抗剪强度参数的变化规律和剪切过程中土砾颗粒运移特征,定量分析土砾颗粒在剪切过程中的位移变化规律,获得试验条件下接触面剪切带厚度为17~23 mm,试验结果表明上剪切盒中的土砾剪切过程中发生显著的位移,其相对下剪切盒的水平位移小于上下剪切盒的相对位移,呈现非线性的变化趋势,并给出土砾实际位移与剪应力的关系。该研究成果可为土与结构相互作用的可视化剪切试验、接触面力学特性和本构模型分析提供重要支撑。  相似文献   
5.
为了研究花岗岩脆性破坏特征和机制,进行不同围压下的三轴压缩试验,并对花岗岩破裂面断口进行电镜扫描测试,分析不同围压下花岗岩断口的微观形貌特征,最后讨论花岗岩脆性破坏机制。试验结果表明:在研究的围压范围内,花岗岩表现为典型的脆性破坏,随围压升高未出现脆–延转换特征;围压作用下除倾斜剪切破坏面外,还有"Y"型破坏形态;峰值前有无塑性变形产生以及发生塑性变形的范围和程度是决定花岗岩发生脆性破坏的主要原因,而岩石矿物成分和微观结构的差异性是其内在机制;峰值后应力降的大小和速度是花岗岩脆性破坏程度的外在表现,宏观裂纹的贯通速度决定峰值后应力降大小,岩体内积聚的能量大小是造成裂纹贯通速率快慢差异的内在因素,宏观断裂面是否完全贯通是应力降大小的决定因素。  相似文献   
6.
 从锦屏二级水电站深埋隧洞施工中发现结构面的剪切滑移可能诱发极强岩爆,因此为研究结构面对滑移型岩爆的控制机制,利用水泥砂浆作为模型材料制作了3种不同起伏高度的不规则锯齿形结构面并进行了直剪试验,研究了不同起伏高度、剪切速率和法向压力下的结构面的强度特征和破坏机制,并对现场的滑移型岩爆进行了初步的机制分析。研究结果表明,每种起伏高度的结构面的峰值抗剪强度和残余强度均随法向压力增大而增大;随着起伏高度的增加,结构面的抗剪强度、内摩擦角逐渐增加;随着剪切速率增加结构面抗剪强度具有先增加后减小的趋势;不同工况下结构面的破坏机制可归纳为锯齿的滑移错断机制、结构面上下盘的拉伸断裂机制和上盘前端下盘后端的冲击断裂机制,结构面的起伏高度越大、法向应力越高,冲击断裂的规模越大;现场结构面的应力集中程度、结构面面壁凸台的尺寸、强度和位置等决定了滑移型岩爆发生的等级、爆坑深度。  相似文献   
7.
 岩爆受岩性、应力条件、开采条件等因素影响,发生机制极其复杂,而物理模拟试验研究岩爆具有独特优势。在总结前人研究成果的基础上,从岩爆物理模拟研究的试验仪器、相似材料、加载、开挖、支护和监测测量方法等方面,详细论述当前岩爆物理模拟研究存在的不足和未来的发展方向。主要得到以下结论:建立适合于岩爆的脆性相似判据并研制“低强度、高脆性”的相似材料,是岩爆物理模拟试验成功的基础;分别在理论上和试验方法上解决硬性结构面的相似性判别方法和制作工艺,是研究结构面型岩爆的关键;在保证加载的准确性和受力的均匀性基础上,研制大吨位的加载装置和可考虑复杂岩–机相互作用的TBM掘进机及钻爆法施工工艺,是研究不同岩爆影响因素的保证;开发能够与“硬岩”岩爆以开裂为主的典型变形破坏特征相适应的多元信息监测和测试系统,是成功解译岩爆孕育演化特征和规律的先决条件。研究结论将有助于改进岩爆的物理模拟试验研究现状,为建立岩爆风险的合理评估、准确预测及防控方法提供科学依据。  相似文献   
8.
 岩爆是深埋硬岩隧洞开挖过程中常遇到的动力地质灾害,从锦屏二级水电站深埋隧洞施工中发现结构面对岩爆具有重要控制作用。本文在总结国内外结构面型岩爆研究现状、列举典型结构面型岩爆案例的基础上,分析了不同结构面类型、产状、不同生产环境、施工方法等条件下结构面对岩爆的作用机制;提出了依据不同作用机制的结构面型岩爆分类方法。分析认为:结构面型岩爆可分为滑移型、剪切破裂型和张拉板裂型;边墙竖直产状的结构面易使围岩压制拉裂而诱发张拉板裂型岩爆,倾斜产状的结构面则会诱发滑移型或剪切破裂型岩爆;未揭露的倾斜产状的结构面诱发的剪切破裂型岩爆强度可能要大于相同条件下揭露出的结构面诱发的滑移型岩爆;采矿工程中容易发生大尺度的滑移型岩爆,而水电交通隧洞更容易发生小尺度的滑移型岩爆,且结构面控制爆坑深度和边界;对剪破坏主导的结构面型岩爆,结构面的力学性质、强度特征因控制所诱发岩爆的能量来源,因而影响岩爆的强度等级。本研究将对深埋硬岩隧洞结构面型岩爆的发生机制、控制方法等具有一定指导意义。  相似文献   
9.
基于应力–应变曲线的岩石脆性特征定量评价方法   总被引:3,自引:2,他引:1  
 脆性是岩石的一种重要性质,岩石的许多力学行为都与其脆性有关。总结现有的基于强度、应力–应变曲线、加卸载试验、硬度、矿物成分等脆性指标,并详细分析这些指标在评价岩石脆性时的局限性。为合理、准确评价岩石的脆性程度,提出一种建立在应力–应变曲线峰后应力降的相对大小和绝对速率基础上、能够考虑岩石塑性屈服特性和应力状态影响的新的脆性指标,并开展单轴和三轴压缩实验对新指标进行检验。试验结果表明:水泥砂浆和大理岩脆性程度均随围压增大而减小,相同应力状态下大理岩脆性程度均大于水泥砂浆,这与二者实际脆性程度相符;单轴试验条件下灰岩、大理岩、花岗岩和红砂岩的脆性程度依次减小,破坏时的轴向应变逐渐增大,这与“应变越低脆性程度越大”吻合。试验结果可很好地验证该脆性指标的可靠性,研究成果对丰富和改进现有的岩石脆性特征评价方法具有重要意义。  相似文献   
10.
采用高强石膏制作含30°,45°,60°预制裂隙试样,通过室内单轴压缩试验研究预应力锚杆的锚固止裂效应。结果表明:与无锚试样相比,加锚试样的弹性模量、起裂强度、峰值强度及残余强度均有不同程度的提高,且随着锚杆预应力值的提高而增大;与30°及60°加锚试样相比,含45°倾角加锚试样锚固效应更为显著;预应力锚杆的作用不仅有效抑制了翼裂纹破裂面的张开变形,而且改变了次生裂纹的扩展模式;试样变形破坏过程中,锚杆轴向应力变化分为缓慢增长期、快速增长期、急剧上升期及减速增长期4个阶段,预应力提高,则锚杆轴向应力峰值相应增大。应用断裂力学理论分析锚固机制,加锚试样峰值强度前,预应力锚杆的作用体现在杆体抗拉形成的"轴压"锚固效应,而峰值强度后则是杆体抗剪切形成的"销钉"锚固效应与"轴压"锚固效应组合作用的结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号