首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   8篇
  国内免费   8篇
电工技术   1篇
综合类   15篇
化学工业   4篇
金属工艺   138篇
机械仪表   1篇
矿业工程   10篇
无线电   2篇
一般工业技术   64篇
冶金工业   98篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   4篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   11篇
  2013年   7篇
  2012年   16篇
  2011年   22篇
  2010年   12篇
  2009年   13篇
  2008年   21篇
  2007年   17篇
  2006年   24篇
  2005年   23篇
  2004年   28篇
  2003年   31篇
  2002年   13篇
  2001年   16篇
  2000年   8篇
  1999年   5篇
  1998年   5篇
  1996年   6篇
排序方式: 共有333条查询结果,搜索用时 14 毫秒
1.
目的 制备碳纳米管-镍/掺硼金刚石复合电极(CNTs-Ni/BDD),并用于非酶葡萄糖电化学检测。方法 采用热丝化学气相沉积(HFCVD)在硅基体上沉积BDD,然后采用物理气相沉积(PVD)技术在BDD上沉积Ni薄膜,最后在管式炉中对Ni/BDD样品进行900 ℃热催化处理,调控热处理时间分别为30、90 min,得到不同微观结构的CNTs-Ni/BDD复合电极。采用扫描电子显微镜(SEM)、Raman光谱和电化学工作站分别表征电极的表面形貌、成分和电化学性能。结果 在Ni的高温催化作用下,BDD作为基体和唯一碳源,在其表面直接生长出CNTs,实现Ni纳米颗粒和CNTs共修饰BDD。热处理时间由30 min增加到90 min,CNTs长度明显增加,对BDD的覆盖程度增加,且顶端的Ni颗粒消失。CNTs和Ni的共修饰作用极大地提升了葡萄糖的电化学检测性能,且30 min-CNTs-Ni/BDD复合电极性能更优异,其灵敏度在葡萄糖浓度0.005~0.02 mmol/L、0.02~1 mmol/L、1.0~5.5 mmol/L线性范围内分别为475、42、19 μA/((mmol/L)?cm2),检测限为0.42 μmol/L(S/N=3)。结论 热催化处理可以简单高效地实现CNTs、Ni共修饰BDD,该复合电极能够有效地提升葡萄糖电化学检测性能。  相似文献   
2.
对初始针状α组织的Ti-5A1-5Mo-5V-3Cr-1Zr近β钛合金在750~775 ℃、10-3~10-1 s-1下热压缩,研究针状α的微观破碎行为。结果表明,随着应变量的增加,针状α经历了旋转位移、部分破碎、完全破碎成等轴形貌的演变阶段。在针状α破碎过程中,当相邻α和β之间符合Burgers取向关系时,β基体内位错通过α/β界面滑移传递切入α内,形成高密度位错,并演化成亚晶结构。当不符合Burgers取向关系时,β基体位错容易在一些取向差异较大的α/β界面塞积、出现局部应力集中,导致在对应针状α内形成局部剪切带相关的亚结构。随后,β基体沿亚结构界面契入针状α内,最终导致针状α相分离破碎。提升温度会加剧β基体动态回复,位错密度大幅下降,不利于在针状α内形成亚结构;提升变形速率使得变形时间大幅缩短,针状α内形成高密度位错、进而转变成亚结构等微观过程无法充分进行,因此均会降低针状α的破碎程度。  相似文献   
3.
采用选区激光熔化技术(SLM)制备了梯度Ti-6Al-4V合金。随着样品沉积厚度的逐渐增加,控制激光功率或扫描速率逐步升高或降低,以此研究了梯度结构Ti-6Al-4V合金的相变及结构演变。结果表明:由于选取激光熔化过程中的高冷却速率,SLM制备的Ti-6Al-4V合金的主要组织结构为初始β柱状晶里的针状马氏体。β柱状晶会随着激光功率的增加或扫描速率的降低而增宽。激光功率和扫描速率的变化会引起马氏体择优取向的变动。最后,由于局部不同的能量变化,随样品沉积厚度增加而逐步升高或降低的扫描速率会引发2种不同的空洞缺陷。  相似文献   
4.
压电纤维复合物在驱动、传感、结构健康检测等领域具有广泛应用,研究压电纤维复合物的驱动性能对于压电纤维复合物实际应用具有重要意义。通过实验研究不同驱动电压条件(峰值、频率及偏置)对压电纤维复合物悬臂梁结构顶端位移的影响,探讨悬臂梁基板材料与压电纤维复合物驱动性能的关系,基于欧拉-伯努利梁理论利用悬臂梁顶端位移计算压电纤维复合物的驱动力。结果表明:压电纤维复合物的驱动性能具有明显的迟滞性。悬臂梁顶端位移的大小与驱动电压峰的峰值呈线性关系,且其不仅与驱动电压的峰值有关,还与驱动电压的偏置、频率有关。压电纤维复合物的驱动性能随基板不同而不同,其对刚性铝板的驱动力为5.2 m N,对柔性麦拉膜的驱动力为0.2 m N。  相似文献   
5.
采用溶胶-凝胶法在Si和Pt/Ti/SiO2/Si衬底上制备钙钛矿结构的Ba0.8Sr0.2TiO3(BST)薄膜。对其前驱体干凝胶进行热重与差热(TG-DSC)分析,以此确定薄膜的热处理工艺。分别采用X射线衍射(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和B1500A半导体器件分析仪对薄膜性能进行表征。结果表明:800℃下在氧气气氛中退火15 min可以得到结晶度良好、致密度较高的纯钙钛矿相BST薄膜,其对应的晶粒尺寸和均方根粗糙度分别为30~40 nm和5.80 nm。薄膜厚度为160~378 nm时,BST薄膜的介电常数和介质损耗随薄膜厚度的增加而增大。厚度为300 nm的BST薄膜的介电常数由于尺寸效应随温度升高单调降低,且居里温度在室温以下。  相似文献   
6.
采用喷雾造粒制备Fe2O3空心球团粒,团粒经过氢气还原得到中空Fe颗粒,通过扫描电镜(SEM)观察Fe2O3空心球团粒及其截面的形貌,研究还原时间对Fe颗粒形貌与截面形貌的影响;采用激光衍射粒度分析仪对Fe颗粒进行粒径分析;采用比表面及孔隙度分析仪表征Fe颗粒的比表面积;采用CSM-MCT显微硬度仪测量空心球状Fe颗粒球壁的硬度和弹性模量。结果表明:Fe2O3空心球团粒和Fe颗粒均为多孔中空球状结构,球壁上存在大量微孔,中空孔直径和球颗粒直径的比值在0.4~0.5;在650℃下还原,随着还原时间增加(4,5,6 h),球壁晶粒逐步长大,中空球状Fe颗粒的比表面积和粒径逐步减小,球壁趋向致密,硬度和弹性模量提高。  相似文献   
7.
以阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)为模板剂,采用水热法合成介孔羟基磷灰石,并利用不同检测手段对其物相、形貌和孔结构进行表征。结果表明,合成物是高度结晶的羟基磷灰石相。表面活性剂对催化剂晶粒的形貌影响较小,但明显影响孔结构的形成。无表面活性剂存在时晶粒的比表面积较小(≤33 m2/g),,通过TEM无法观察到明显的孔结构。而对于有表面活性剂存在时合成的样品,可以看到许多孔径大小为2~7 nm的开孔,不均匀地分布在羟基磷灰石纳米棒的表面。氮气吸附-脱附实验得到的均为吸附IV型等温线,并伴有明显的滞后环,证实了介孔结构的存在。当CTAB与羟基磷灰石的摩尔比为1:2时,样品的比表面积与孔容最大,其比表面积为97.1 m2/g,孔容为0.466 cm3/g。  相似文献   
8.
制备了一种新型的碳化物颗粒增强铁基粉末冶金材料,采用光学显微镜、扫描电镜、能谱分析仪和力学性能试验机等研究了烧结温度和退火温度对其组织与性能的影响。结果表明:随着烧结温度升高,碳化物形貌从块状向针状转变;1 270℃烧结时的相对密度和硬度最高,1 240℃烧结时的抗弯强度和冲击韧度最高;脆性针状碳化物在晶界上以半连续网状析出,降低了材料的性能;1 200℃退火后,晶界上的针状碳化物分解并球化,其相对密度、硬度、抗弯强度和冲击韧度分别达到96.2%,44.5HRC,628MPa,3.8J.cm-2。  相似文献   
9.
采用电泳沉积技术在Ni基体上制备Fe2O3膜,研究pH值对Fe2O3悬浮液稳定性的影响;沉积时间对电泳沉积速率,沉积层厚度及致密度的影响;高温处理对Fe2O3膜的致密度及膜与基体之间结合性能的影响。利用扫描电镜(SEM)、纳米粒度及zeta电位分析仪对电泳沉积进行表征。实验结果表明:当pH值为3时,悬浮液的zeta电位高达67 mV以上,此时悬浮液分散均匀。当电场强度为30 V/cm,沉积时间为120 s时,可以制备出均匀、无裂纹、相对密度为56%的Fe2O3膜。经1 000℃与1 100℃热处理4 h后,Fe2O3膜的致密度有所提高,与基体之间的结合性能改善。  相似文献   
10.
高合金铁基粉末冶金材料摩擦磨损性能的研究   总被引:1,自引:0,他引:1  
为了获得高性能的耐磨材料,采用粉末冶金方法制备了高合金颗粒强化铁基材料.利用光学显微镜、扫描电镜、能谱分析仪和摩擦磨损实验研究了干摩擦状态下材料的摩擦磨损性能.结果表明:材料的磨损机理是由粘着磨损、磨料磨损和接触疲劳磨损共同作用的.本文研究的高合金铁基粉末冶金耐磨材料,在50 s内进入稳定磨损阶段,能在很短的时间里达到最佳使用效果.干摩擦120 min后,材料的比磨损量小,仅为2.096×10-15 kg/(m.N),摩擦系数变化不大,在0.05~0.06保持相对稳定,说明材料的耐磨性能较好.材料组织中M6C碳化物能保证材料很好的耐磨性能,而M2C碳化物则降低材料的耐磨性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号