首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
电工技术   1篇
化学工业   3篇
金属工艺   2篇
矿业工程   1篇
一般工业技术   2篇
冶金工业   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
以天然鳞片石墨为宿主,FeCl3、NiCl2为插层剂,通过熔盐法制备了不同阶结构的三元FeCl3-NiCl2-GICs.采用XRD、SEM、EDS等对GICs的阶结构、表面形貌及成分进行了分析,试样的导电性和微波吸收性能分别由粉末电阻率测定仪和网络矢量分析仪进行测定.结果表明,插层过程中宿主石墨沿c轴方向膨胀并在层面边缘留下侵蚀痕迹,随着阶数的升高边缘侵蚀程度逐渐减弱.不同阶结构的三元FeCl3-NiCl2-GICs中Cl元素在石墨层间均匀分布,而Fe、Ni元素在单个鳞片内则旱不均匀分布,Fe元素的相对百分含量由鳞片边缘向中心呈上升趋势,而Ni元素则完全相反.FeCl3-NiCl2-GICs的电阻率低于宿主石墨,且随着阶数的升高先降低后增大,二阶FeCl3-NiCl2-GICs的导电性最好.FeCl3-NiCl2-GICs具有较好的微波吸收性能,其最大反射损耗量随阶数增大先减小后增大.一阶FeCl3-NiCl2-GICs反射损耗最最大,在试样厚度为2mm时,其最大反射损耗量为-10.3dB.  相似文献   
2.
酚醛树脂炭包覆天然微晶石墨作锂离子电池负极材料   总被引:2,自引:0,他引:2  
通过酚醛树脂包覆天然微晶石墨和炭化处理制备具有核壳结构的酚醛树脂炭包覆天然石墨负极材料,考察了酚醛树脂包覆量对酚醛树脂炭包覆天然石墨负极材料结构和性能的影响。结果表明,表面树脂炭的存在使石墨表面更光滑,但不会改变其片层状晶体结构。酚醛树脂炭包覆石墨的比表面积随酚醛树脂包覆量的增加而增大。包覆适当厚度的酚醛树脂炭可明显改善天然微晶石墨的首次充放电性能和循环性能,酚醛树脂包覆量为3%的酚醛树脂炭包覆石墨的首次可逆容量为334.3mAh/g,首次充放电效率为84.8%。  相似文献   
3.
通过调节反应参数制备出不同阶结构的三元FeCl3-NiCl2-石墨层间化合物(graphite intercalation compounds,GICs),考察了阶结构对FeCl3-NiCl2-GICs的导电性能和微波吸收性能的影响.结果表明:FeCL3-NiCl2-GICs是一种介电损耗型微波吸收材料,其微波吸收特性与FeCl3-NiCl2-GlCs的电导率有密切的关系,电导率过高时其微波吸收性能下降.与电导率随阶数的变化规律相反,最大反射损耗量随阶数增大先减小后增大.一阶FeCl3-Nicl2-GICs的最大反射损耗量高达-10.3 dB.  相似文献   
4.
定量空气中三元FeCl3-NiCl2-石墨层间化合物的制备   总被引:2,自引:0,他引:2  
采用熔盐法,以天然鳞片石墨为宿主,NiCl:与FeCl,的混合物为插层剂制备三元FeCl3-NiCl2-GIC。改真空下熔封玻璃管为在空气中直接熔封玻璃管,在反应体系中存在少量空气的条件下,考察了石墨与氯化物的摩尔比、NiCl2与FeCl3的摩尔比、反应温度和反应时间等工艺因素对产物阶结构的影响。结果表明,改变反应体系中石墨与氯化物的摩尔比、FeCl3与NiCl2的摩尔比、反应温度和保温时间,在反应初期存在一定量空气的条件下也可以得到阶结构不同的FeCl3-NiCl2-GIC。当石墨与氯化物的摩尔比为3/1,FeCl3与NiCl2的摩尔比为7/3,反应温度为400℃,反应时间为24h时,所得产物为二阶FeCl3-NiCl2-GIC。  相似文献   
5.
以间苯二酚和甲醛为原料,六次甲基四胺为催化交联剂,通过溶胶-凝胶、常压干燥和炭化处理制备炭气凝胶,考察了炭化升温速率对炭气凝胶孔结构和电容特性的影响。采用BET法分析不同升温速率下制得的炭气凝胶的孔结构,并利用直流充放电、交流阻抗技术和循环伏安法测定由炭气凝胶电极与KOH电解质构成的双电层电容器的性能。结果表明:在升温速率为2℃/min时制备的炭气凝胶电极具有良好的电化学性能。在30%的KOH电解质溶液中低电流密度(1mA/cm^2)充放电时的比电容为176F/g,电流密度增大20倍,容量保持率为84.3%,经过1000次循环,容量保持率达93%以上,具有良好的大电流充放电性能和循环性能。  相似文献   
6.
以间苯二酚(R)、甲醛(F)为原料,盐酸作催化剂,通过添加嵌段共聚物F127作致孔剂,利用溶液协同自组装和炭化处理制备多孔炭材料。采用扫描电镜、透射电镜和N2吸附分析不同F127加入量制得的多孔炭材料的形貌和孔隙结构,并利用直流充放电、交流阻抗技术和循环伏安法测定以上述多孔炭材料为电极的双电层电容器(EDLC)的电化学性能。结果表明:酸催化下的酚醛树脂基体网络结构在炭化过程中较好地保留了F127形成的微相结构,不同F127加入量制得的多孔炭材料比表面积在640~700 m2/g。F127/R为1.3时制得的多孔炭材料比表面积为701.2 m2/g,孔容为0.54cm3/g,其中中孔孔容0.362 cm3/g,中孔率达67.04%;在30%KOH电解质溶液中低电流密度(1 mA/cm2)充放电时的比电容为165 F/g,电流密度增大20倍,容量保持率为95%,经过5 000次循环,容量保持率达94%以上,具有良好的大电流充放电性能和循环性能。  相似文献   
7.
利用混合酸对催化裂解法制备的碳纳米管进行纯化,然后先后用氨水和柠檬酸对纯化后的多壁碳纳米管进行修饰,最后利用共沉淀法制备碳纳米管氧化铁前驱体,并于450℃下热处理2 h.通过X射线衍射仪、扫描电镜和透射电镜表征了复合粉体的结构和形貌.光谱结果表明:经过混合酸纯化后,碳纳米管表面拥有丰富的羟基和羧基等官能团,而且能够在纯化后的多壁碳纳米管表面引入氨基和柠檬酸分子.电子显微图像显示碳纳米管表面被α-Fe2O3纳米颗粒和纳米棒修饰.  相似文献   
8.
In order to improve optical property of the multi-walled carbon nanotubes (MWNTs), MWNTs were decorated with europium oxide (Eu2O3) nanoparticles by using co-deposition method. The MWNTs/Eu2O3 composites were examined by XRD, scanning electron microscopy, transmission electron microscopy, and VUV-Vis Luminescence spectroscopy and citric acid (CA) molecules were introduced onto the surface of MWNTs. The results show that there are many oxygenated functional groups on the surface of the MWNTs after the treatment of mixture acid, such as carboxy, hydroxl, carbony and amidocyanogen. The results of electron microscopy illuminate that the MWNTs are coated by nano-europium oxide after annealed at 750℃. The MWNTs/Eu2O3 composite emits much strong red light at about 610 nm under UV excitation.  相似文献   
9.
运用正交试验,采用熔盐法,以天然鳞片石墨为宿主,CoCl2与FeCl3的混合物为插层剂制备三元FeCl3-CoCl2-GICs。考察了石墨与氯化物的摩尔比、CoCl2与FeCl3的摩尔比、反应温度和反应时间等工艺因素对产物阶结构和主阶产量的影响,结果表明反应中FeCl3和CoCl2插入石墨层间的驱动力来自于反应体系的温度和Cl2的分压;CoCl2/FeCl3比是影响结果的最主要因素。  相似文献   
10.
熔盐法合成三元FeCl3-NiCl2-石墨层间化合物的研究   总被引:3,自引:0,他引:3  
采用熔盐法,以天然鳞片石墨为宿主,NiCl2与FeCl3的混合物为插层剂合成三元FeCl3—NiCl2—GIC。考察了石墨与氯化物的摩尔比、NiCl2与FeCl3的摩尔比、反应温度和反应时间等工艺因素对产物阶结构和产物中Ni与Fe原子比的影响,探讨了NiCl2与FeCl3在石墨层间的插层过程。研究结果表明,改变反应体系中石墨与氯化物的摩尔比、NiCl2与FeCl3的摩尔比、反应温度和恒温时间,可以得到阶结构和Ni/Fe原子比不同的:FeCl3—NiCl2—GIC,产物中的。Ni/Fe原子比随反应体系中NiCl2与FeCl3的摩尔比的增大、反应温度的提高而增加。当石墨/氯化物的摩尔比为3:1,NiCl2/FeCl3的摩尔比为3:7,反应温度为400℃,反应时间为72h时,所得产物为一阶FeCl3—NiCl2—GIC。反应过程中存在FeCl3先插入石墨层间,然后NiCl2逐渐替换FeCl3的插层反应机制。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号