首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2232篇
  免费   188篇
  国内免费   16篇
电工技术   31篇
综合类   24篇
化学工业   443篇
金属工艺   72篇
机械仪表   79篇
建筑科学   45篇
能源动力   142篇
轻工业   265篇
水利工程   31篇
石油天然气   23篇
无线电   261篇
一般工业技术   514篇
冶金工业   143篇
原子能技术   42篇
自动化技术   321篇
  2023年   63篇
  2022年   111篇
  2021年   193篇
  2020年   128篇
  2019年   138篇
  2018年   178篇
  2017年   148篇
  2016年   128篇
  2015年   92篇
  2014年   126篇
  2013年   201篇
  2012年   121篇
  2011年   116篇
  2010年   84篇
  2009年   67篇
  2008年   52篇
  2007年   46篇
  2006年   39篇
  2005年   19篇
  2004年   31篇
  2003年   15篇
  2002年   26篇
  2001年   21篇
  2000年   9篇
  1999年   15篇
  1998年   36篇
  1997年   30篇
  1996年   23篇
  1995年   16篇
  1994年   18篇
  1993年   17篇
  1992年   14篇
  1991年   12篇
  1990年   3篇
  1989年   13篇
  1988年   19篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
排序方式: 共有2436条查询结果,搜索用时 218 毫秒
1.

Hydrological drought is assessed through river flow, which depends on river runoff and water withdrawal. This study proposed a framework to project future hydrological droughts considering agricultural water withdrawal (AWW) for shared socioeconomic pathway (SSP) scenarios. The relationship between AWW and potential evapotranspiration (PET) was determined using a deep belief network (DBN) model and then applied to estimate future AWW using projections of the twelve global climate models (GCMs). 12 GCMs were bias-corrected using the quantile mapping method, climate variables were generated, and river flow was estimated using the soil and water assessment tool (SWAT) model. The standardized runoff index (SRI) was used to project the changes in hydrological drought characteristics. The results revealed a higher occurrence of severe droughts in the future. Droughts would be more frequent in the near future (2021–2060) than in the far future (2061–2100) and more severe when AWW is considered. Droughts would also be more severe for SSP5-8.5 than for SSP2-4.5. The study revealed that the increased PET due to rising temperatures is the primary cause of the increased drought frequency and severity. The AWW will accelerate the drought severities in the future in the Yeongsan River basin.

  相似文献   
2.
The anatomical variations of two plants from the Nyctaginaceae family, Bougainvillea spectabilis and Bougainvillea glabra, were studied using light and scanning electron microscopy methods in this work. Bougainvillea is a dicotyledonous with defensive traits that can withstand extreme (hot and dry) settings; according to the findings, crystal inclusions in cells, woody spines, and an abnormal development pattern are all features that help them survive against predators and are unique to this species. The Bougainvillea plant's leaves are arranged in simple pattern, alternate to each other along stem having an undulate leaves edge and an oval form. The xylem and phloem, palisade, parenchyma midrib, spongy mesophyll, raphide crystal bundles, and trichomes were all visible when bracts and leaves were transversally sectioned and dyed with toluidine blue O (TBO). The presence of crystals was confirmed by a detailed examination of the transverse leaves by using bright-field and cross-polarizing microscopy. Dissecting microscopic examination showed that all the leaves revealed leaves venation pattern that had midvein, lateral veins areoles, and trichomes. Although trichomes have been identified on both sides, a closer look at a cleaned leaf dyed with TBO showed multicellular abundant trichomes on adaxial surface. Stomata complexes were typically found on the abaxial surface of the leaf according to epidermal peels. Present studies also showed that on adaxial side, stomata were lesser in number or were absent and also showed that the morphologies of the pavement cells on the adaxial and abaxial sides of the leaf differed.  相似文献   
3.
Wireless Personal Communications - This paper presents a Multilayer Partially Homomorphic Encryption Text Steganography, an invisible approach for covert communication. Existing text-based schemes...  相似文献   
4.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   
5.
A series of co-precipitated Zn1?xCoxGdyFe2?yO4 spinel ferrites (x = 0.0–0.5, y = 0.00–0.10) sintered at 1000 °C were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), vibrating sample magnetometery (VSM) and microwave cavity perturbation (MCP). XRD patterns and FTIR spectra reveal formation of the spinel phase along with few traces of GdFeO3 second phase. The lattice constant decreases with an increasing amount of CoGd ions due to the segregation of Gd3+on the grain boundaries and due to replacement of lager Zn2+ ions with smaller Co2+ ions. SEM shows grain size to decrease with the increase of CoGd contents due to grain growth inhibition by the second phase. VSM results show remanence and saturation magnetization to exhibit an increasing trend due to Co substitution on octahedral sites and presence of a second phase. The coercivity increases with the increase of CoGd contents due to anisotropic nature of Co. MCP shows the complex magnetic permeability to increase with CoGd concentration while the complex permittivity decreases.  相似文献   
6.
Multimedia Tools and Applications - Disc herniation is considered as a very common spine abnormality resulting in severe pain in back and legs. Besides it has great impact on economy of suffering...  相似文献   
7.
This numerical study reveals the heat transfer performance of hybrid/single nanofluids inside a lid-driven sinusoidal trapezoidal-shaped enclosure. The right and left inclined surfaces of the trapezium have been considered as insulated, whereas the bottom sinusoidal wavy and the flat top surfaces of the enclosure as hot and cold, respectively. The governing partial differential equations of fluid's velocity and temperature have been resolved by applying the finite element method. The implications of Prandtl number (4.2-6.2), Richardson number (0.1-10.0), undulation number (0-3), nanoparticles volume fraction (0%-3%), and nanofluid/base fluid (water, water–copper (Cu), water–Cu–carbon nanotube, water–Cu–copper oxide (CuO), water–Cu–TiO2, and water–Cu–Al2O3) on the velocity and temperature profiles have been studied. Simulated findings have been represented by means of streamlines, isothermal lines, and average Nusselt number of above-mentioned hybrid nanofluids for varying the governing parameters. The comparison of heat transfer rates using hybrid nanofluids and pure water has been also shown. The heat transfer rate is increased about 15% for varying Richardson number from 0.1 to 10.0. Blending of two nanoparticles suspension in base fluid has a higher heat transfer rate—approximately 5% than a mononanoparticle. Moreover, a higher average Nusselt number is obtained by 14.7% using the wavy surface than the flat surface of the enclosure. Thus, this study showed that applying hybrid nanofluid may be beneficial to obtain expected thermal performance.  相似文献   
8.
Wireless Personal Communications - The design of a fractal based slot antenna, to serve the dual-band communication applications, is proposed in this paper. The structure of the proposed antenna is...  相似文献   
9.
CNTs were decorated onto Sr doped ZnO nanoparticles to construct an efficient photocatalyst via a facile sol-gel method. The as-fabricated Sr doped ZnO/CNTs with recyclability exhibits Sr and CNTs content dependent hydrogen evolution activit under visible light illumination. The Sr doped ZnO/CNTs photocatalyst shows the highest hydrogen evolution rate of 2732.2 μmolh?1g?1, which is 33.7 and 2.83 times higher than pure ZnO and Sr doped ZnO photocatalysts, respectively. The improved hydrogen evolution activity of Sr doped ZnO/CNTs is primarily assigned to high surface area, Sr doping and construction of heterojunction, which can extend the light absorption, decrease the optical band gap and improve the charge separation. Moreover, the underlying photocatalytic mechanism is proposed on the basis of Mott-Schottky study and explains the interfacial charge transfer process from ZnO to CNTs and Sr. This work open new strategies to synthesize CNTs based nanocomposite for hydrogen evolution.  相似文献   
10.
Developing only Fe derived bifunctional overall water splitting electrocatalyst both for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) while performing at low onset overpotential and with high catalytic stability is a rare instance. We present here the first demonstration of unique iron-oxide nanobeads (FeOx-NBs) based electrocatalyst executing both OER and HER with high activity. Thin-film electrocatalytic FeOx-NBs assembly is surface grown via simple spray coating (SC). The unique SC/FeOx-NBs propels OER initiating water oxidation just at 1.49 VRHE (η = 260 mV) that is the lowest observable onset potential for OER on simple Fe-oxide based catalytic films reported so far. Catalyst also reveals decently high HER activity and competent overall water splitting performance in the FeOx-NBs two-electrode system as well. Catalyst also presents stable kinetics, with promising high electrochemically active surface area (ECSA) of 1765 cm2, notable Tafel slopes of just 54 mV dec1? (OER) and 85 mV dec1? (HER), high exchange current density of 1.10 mA cm2? (OER), 0.58 mA cm2? (HER) and TOF of 74.29s1?@1.58VRHE, 262s1?@1.62VRHE (OER) and 82.5s1?@-0.45VRHE, 681s1?@-0.56VRHE (HER).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号