首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   15篇
  国内免费   18篇
综合类   8篇
化学工业   78篇
金属工艺   1篇
建筑科学   1篇
矿业工程   6篇
轻工业   59篇
石油天然气   2篇
武器工业   1篇
无线电   3篇
一般工业技术   28篇
原子能技术   3篇
自动化技术   4篇
  2023年   7篇
  2022年   5篇
  2020年   4篇
  2019年   6篇
  2018年   11篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   14篇
  2013年   7篇
  2012年   6篇
  2011年   9篇
  2010年   6篇
  2009年   6篇
  2008年   14篇
  2007年   15篇
  2006年   14篇
  2005年   20篇
  2004年   18篇
  2003年   5篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
1.
为提高植物乳杆菌CGMCC8198冻干存活率,以浓缩乳清蛋白粉、木糖醇和壳寡糖为保护剂材料,先后通过单因素和正交试验得出最优复合配方,并进一步对冻干菌粉的活性及储存性能进行探究。研究表明:各保护剂成分对冻干存活率的影响顺序为浓缩乳清蛋白粉>壳寡糖>木糖醇,且最优配方质量分数分别为15%、6%及1.5%,添加复合保护剂的冻干菌粉表面光滑且精致,流式细胞术分析表明冻干后其活性保持较好,约为80.47%。同时,耐受试验表明冻干菌粉具有较好的耐酸性和肠溶性。  相似文献   
2.
制备活性炭负载K_2CO_3用于催化餐饮废油合成生物柴油   总被引:1,自引:0,他引:1  
以K2CO3为催化剂,工业碱木质素(KL)为活性炭(AC)前体,在管式电阻炉中经一步共混活化(K2CO3/KL质量比为0.6、活化温度800℃、N2流量100cm3/min、活化时间2h)制备K2CO3/AC固体碱催化剂,用于餐饮废油与甲醇的酯交换反应合成生物柴油。对制备的固体碱催化剂进行了X-射线衍射(XRD)、BET表面积及扫描电镜(SEM)表征。考察了反应温度、催化剂用量、反应时间、醇油摩尔比等因素对餐饮废油转化为生物柴油产率的影响。结果表明当反应时间2h、反应温度60℃、醇油摩尔比15∶1、催化剂为原料油质量的3.0%时,生物柴油最大产率为87.5%。考查了催化剂的循环利用效果,结果表明催化剂能循环利用3次,第3次利用时生物柴油的产率仍达到80.7%。  相似文献   
3.
通过构建人MUC2启动子荧光素酶报告基因表达质粒,研究5株乳酸菌对MUC2启动子转录活性的影响。采用RT-PCR及ELISA方法分别在mRNA和蛋白质水平上就乳酸菌对SW480结肠细胞内源性MUC2转录表达的影响情况进行了分析。结果显示,5株乳酸菌的发酵上清液(SN)和菌体裂解液(CL)均能明显增强MUC2基因启动子的转录活性,并上调肠道细胞MUC2转录及表达水平,其中L. acidophilus 1.2686菌体裂解液的作用最为显著。进一步研究显示:TGF-β抑制剂可阻断L. acidophilus 1.2686对MUC2的转录激活作用,TGF-β激动剂协同性增强该作用,说明TGF-β信号通路很可能在乳酸菌增强肠道细胞MUC2基因转录表达过程中发挥着重要作用。  相似文献   
4.
以线性低密度聚乙烯为原料,向其中加入单油酸甘油酯,采用共混挤出的方法,吹塑出了厚度约为0.11mm的棚膜,研究了单油酸甘油酯对聚乙烯棚膜性能的影响。结果表明,单油酸甘油酯有较好的防雾效果;随着其添加量的增加,棚膜的水滴接触角减小,水浴法防雾时间增长;但与此同时,单油酸甘油酯的加入降低了棚膜的透光率和力学强度。当单油酸甘油酯的添加量为2%时,棚膜在60℃水浴中的防雾时间达到183 h,而普通聚乙烯棚膜的防雾时间只有5min。  相似文献   
5.
采用静电纺丝技术制备不同质量比的PLA/TCMC静电共混纺丝膜,并通过FTIR、TG、DSC及拉伸测试进行表征.同时将质量比为60∶40的静电共混纺丝膜应用于溶液中Cu2+去除研究,考察了初始浓度、流动时间、使用次数等对静电共混纺丝膜去除溶液中Cu2+的能力.结果表明:PLA与TCMC的质量比为60∶40时,纺丝才能得到的纤维直径比较均匀,纤维形貌较好、具有较好的热稳定性和拉伸强度;静电共混纺丝膜能一定程度地去除溶液中的铜离子,其去除率最高可达13.77%;去除率受初始浓度的影响,当初始浓度为40mg/L时去除率最高;随着处理时间的增大,使用次数的增加,膜对溶液的去除率逐渐降低,膜的使用效果逐渐减弱.  相似文献   
6.
以分别含有单一的U(Ⅵ)、Cu(Ⅱ)溶液以及U(Ⅵ)、Cu(Ⅱ)混合溶液为吸附质,系统探讨了pH值、吸附剂量、温度、时间和初始离子浓度对向日葵秸秆吸附效果的影响。采用准二级动力学模型、Langmuir、Freundlich和Langmuir-Freundlich等温吸附模型对实验数据进行拟合,从分配系数和分离因子角度对吸附选择性进行分析,并对吸附机理进行探讨。结果表明:向日葵秸秆对U(Ⅵ)和Cu(Ⅱ)的吸附分别是自发的吸热和放热反应;吸附动力学均符合准二级动力学模型,即化学吸附为控速步骤;单离子体系下U(Ⅵ)和Cu(Ⅱ)的吸附等温线分别符合Langmuir-Freundlich和Langmuir等温吸附模型;复配体系下,当干扰Cu(Ⅱ)浓度≥60 mg·L-1时,U(Ⅵ)的吸附等温线可用Langmuir-Freundlich模型描述;而当干扰U(Ⅵ)浓度≥200 mg·L-1时,Cu(Ⅱ)的吸附等温线可用Langmuir模型描述。当溶液中同时存在U(Ⅵ)和Cu(Ⅱ)两种离子时,离子间存在竞争吸附,且向日葵秸秆对U(Ⅵ)具有更高的选择性,这与金属本身的特性有关。向日葵秸秆吸附前后的SEM、EDX和FT-IR图谱表明,吸附U(Ⅵ)和Cu(Ⅱ)的主要方式为络合和离子交换。  相似文献   
7.
以天然玄武岩为甲烷裂解催化剂,通过XRF、XRD、SEM及XPS对催化剂组成、结构、表面活性物种进行了研究。利用固定床反应装置考察了不同反应温度、空速条件下玄武岩催化甲烷裂解制C_2烃的效果。结果表明,在气体空速为4 L·h-1条件下,当反应温度为1 225 K时,甲烷的转化率为7.66%,C_2烃的选择性为33.64%;当反应温度升至1 325 K时,甲烷的转化率可达17.13%,同时C_2烃的选择性为27.21%。相同温度下,气体空速越大,乙烷的选择性越高,乙炔的选择性越低。催化剂活性因表面积炭的产生而降低,积炭类型为芳烃积炭。  相似文献   
8.
通过水热合成法和离子交换法制备了负载Ni的介孔Ni-HZSM-5分子筛催化剂,采用XRD、SEM、EDX、FT-IR、N_2物理吸附-脱附等手段对催化剂组成、结构和形貌进行了研究,并以固定床微石英管反应器考察了不同反应温度、空速条件下介孔Ni-HZSM-5分子筛催化剂的乙烯齐聚反应性能。结果表明,Ni-HZSM-5样品具有介孔ZSM-5分子筛典型的特征结构,Ni进入分子筛骨架致使比表面降低,但孔径变大,更有利于齐聚反应的进行;在气体空速为1.2 L/(g·h)、反应温度为275℃时,乙烯的转化率为87.82%,C_4的选择性可达57.25%,C_6的选择性可达30.74%,说明Ni-HZSM-5催化剂对乙烯齐聚具有较好的催化性能。  相似文献   
9.
以牦牛皮为原料,提取了酸溶性胶原蛋白(ASC)和酶溶性胶原蛋白(PSC),并对胶原蛋白分子的结构和性能进行了分析。结果表明:ASC和PSC的提取率分别为54%±0.18%和78%±0.42%;UV、FTIR及电泳分析结果表明:ASC和PSC具有完整的三股螺旋结构,符合Ⅰ型胶原蛋白的结构特征;氨基酸分析发现:ASC和PSC含有丰富的亚氨基酸,其含量分别为264.1和276.6残基/1000残基;热稳定性分析表明:ASC和PSC热变性温度(Td)分别为37.5、41.5℃,热收缩温度分别为62.5、70.0℃,证明PSC的热稳定性高于ASC;SEM结果表明:ASC和PSC表面为松散、不规则的纤维网形态;自组装实验结果显示:两者具有一定的成纤维能力,自组装产物的D-周期分别为(68.2±5)nm、(69.3±3)nm,且PSC比ASC的组装速度快。  相似文献   
10.
将纳米/微米CaCO3按照不同比例混合,并以10%(质量分数)的填充量与聚丙烯(PP)熔融共混制备了CaCO3/PP复合材料。采用广角X射线衍射仪和差示扫描量热分析研究了各样品的PP结晶形态及非等温结晶动力学。结果表明,CaCO3粒子能够诱导β晶产生,且NCP2(纳米/微米CaCO3的质量比为1∶4)中β晶的含量达到最高值1.21%;NCP2的非等温结晶动力学参数和半结晶时间在冷却速率Ф<15℃/min时相比单粒度分布CaCO3填充改性PP分别升高和降低;同一组份样品,随着结晶度增加,F(T)增加;相同结晶度下,NCP2的F(T)值最小;Kissinger法计算出PP及NCP2的结晶活化能分别为205.81 kJ/mol,201.01 kJ/mol。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号