首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   955篇
  免费   47篇
  国内免费   9篇
电工技术   22篇
综合类   7篇
化学工业   218篇
金属工艺   32篇
机械仪表   67篇
建筑科学   24篇
矿业工程   3篇
能源动力   61篇
轻工业   97篇
水利工程   3篇
石油天然气   6篇
无线电   92篇
一般工业技术   179篇
冶金工业   44篇
原子能技术   5篇
自动化技术   151篇
  2023年   15篇
  2022年   36篇
  2021年   55篇
  2020年   50篇
  2019年   64篇
  2018年   51篇
  2017年   40篇
  2016年   52篇
  2015年   27篇
  2014年   48篇
  2013年   93篇
  2012年   59篇
  2011年   72篇
  2010年   52篇
  2009年   47篇
  2008年   31篇
  2007年   32篇
  2006年   20篇
  2005年   13篇
  2004年   13篇
  2003年   13篇
  2002年   12篇
  2001年   10篇
  2000年   4篇
  1999年   7篇
  1998年   10篇
  1997年   6篇
  1996年   9篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1966年   1篇
排序方式: 共有1011条查询结果,搜索用时 15 毫秒
1.
Journal of Porous Materials - Silver monoliths using non-ionic surfactant Triton X-102 as reducing agent with and without additives such as Dextran and Ludox (SiNPs) were synthesized by modified...  相似文献   
2.
3.
A series of co-precipitated Zn1?xCoxGdyFe2?yO4 spinel ferrites (x = 0.0–0.5, y = 0.00–0.10) sintered at 1000 °C were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), vibrating sample magnetometery (VSM) and microwave cavity perturbation (MCP). XRD patterns and FTIR spectra reveal formation of the spinel phase along with few traces of GdFeO3 second phase. The lattice constant decreases with an increasing amount of CoGd ions due to the segregation of Gd3+on the grain boundaries and due to replacement of lager Zn2+ ions with smaller Co2+ ions. SEM shows grain size to decrease with the increase of CoGd contents due to grain growth inhibition by the second phase. VSM results show remanence and saturation magnetization to exhibit an increasing trend due to Co substitution on octahedral sites and presence of a second phase. The coercivity increases with the increase of CoGd contents due to anisotropic nature of Co. MCP shows the complex magnetic permeability to increase with CoGd concentration while the complex permittivity decreases.  相似文献   
4.
This numerical study reveals the heat transfer performance of hybrid/single nanofluids inside a lid-driven sinusoidal trapezoidal-shaped enclosure. The right and left inclined surfaces of the trapezium have been considered as insulated, whereas the bottom sinusoidal wavy and the flat top surfaces of the enclosure as hot and cold, respectively. The governing partial differential equations of fluid's velocity and temperature have been resolved by applying the finite element method. The implications of Prandtl number (4.2-6.2), Richardson number (0.1-10.0), undulation number (0-3), nanoparticles volume fraction (0%-3%), and nanofluid/base fluid (water, water–copper (Cu), water–Cu–carbon nanotube, water–Cu–copper oxide (CuO), water–Cu–TiO2, and water–Cu–Al2O3) on the velocity and temperature profiles have been studied. Simulated findings have been represented by means of streamlines, isothermal lines, and average Nusselt number of above-mentioned hybrid nanofluids for varying the governing parameters. The comparison of heat transfer rates using hybrid nanofluids and pure water has been also shown. The heat transfer rate is increased about 15% for varying Richardson number from 0.1 to 10.0. Blending of two nanoparticles suspension in base fluid has a higher heat transfer rate—approximately 5% than a mononanoparticle. Moreover, a higher average Nusselt number is obtained by 14.7% using the wavy surface than the flat surface of the enclosure. Thus, this study showed that applying hybrid nanofluid may be beneficial to obtain expected thermal performance.  相似文献   
5.
6.
The removal of methylene blue (MB) from aqueous solutions using sulfuric acid modified Cupressus semperirens cones (H2SO4-CSC), was investigated. Results showed that a pH value of 12 was favorable for the adsorption of MB and that the moisture and ash yields are suitable for industrial exploitation. A high porosity value was found, 68.1%. In agreement with its low content of basicity compared to its acidity, the H2SO4-CSC absorbent had an acidic behavior. Rate constants of pseudo-first-order, pseudo-second-order, and nth kinetic model were determined to analyze the dynamic of the biosorption process; they showed that adsorption kinetics followed a pseudo-second-order and nth kinetic models. Ionic strength was shown to have a negative impact on the biosorption of MB onto H2SO4-CSC. The Sips isotherm model was found to be the most relevant to describe MB biosorption onto H2SO4-CSC with a correlation factor R2?>?0.999. The biosorption capacity of H2SO4-CSC was found to be 460?mg?g?1 at 10°C and 590?mg?g?1 at 25°C, confirming biosorbent efficiency for the removal of MB dye from aqueous solutions. Thermodynamic parameters indicated that the biosorption process of MB was endothermic and more effective at high temperatures. The values of ΔG° and ΔH° confirmed that the biosorption of MB onto H2SO4-CSC was spontaneous and endothermic in nature. An irregular increase in randomness at the H2SO4-CSC–solution interface during the biosorption process was suggested by the positive values of ΔS°.  相似文献   
7.
Rapid and accurate estimation of Ground Cover (GC) at regional and global scales for agricultural management application is only possible by using remote sensing (RS). In this study, two Vegetation Indices (VIs) including the Perpendicular Vegetation Index (PVI) and Normalized Difference Vegetation Index (NDVI) were used for estimating GC. Since the parameters of the bare soil line have an important role in calculating GC based on PVI, this line was extracted based on the red-NIRmin (minimum near infrared) method with different intervals (0.0001, 0.0005, and 0.0010). In addition to traditional statistics such as Root Mean Square Error (RMSE), the sensitivity analysis (S) was also used to sharpen the accuracy of the models' estimations. The results indicated that the PVI-based method, in contrast to the NDVI-based approach, had a better performance in estimating GC of wheat. The highest correlation between the observed GC and the estimated GC based on PVI method was achieved in interval length of 0.0005 (R2 = 0.91) with RMSE equal to 8.82. This regression line (GCEST = -3.47 + 0.96 GCOBS) was not significantly different from the 1:1 line. As expected, the best estimation was achieved when the sensitivity of estimated GC based on PVI (length of the interval: 0.0005) was almost constant and low compared to the other models.  相似文献   
8.
This work presents a complete bond graph modeling of a hybrid photovoltaic-fuel cell-electrolyzer-battery system. These are multi-physics models that will take into account the influence of temperature on the electrochemical parameters. A bond graph modeling of the electrical dynamics of each source will be introduced. The bond graph models were developed to highlight the multi-physics aspect describing the interaction between hydraulic, thermal, electrochemical, thermodynamic, and electrical fields. This will involve using the most generic modeling approach possible for managing the energy flows of the system while taking into account the viability of the system. Another point treated in this work is to propose. In this work, a new strategy for the power flow management of the studied system has been proposed. This strategy aims to improve the overall efficiency of the studied system by optimizing the decisions made when starting and stopping the fuel cell and the electrolyzer. It was verified that the simulation results of the proposed system, when compared to simulation results presented in the literature, that the hydrogen demand is increased by an average of 8%. The developed management algorithm allows reducing the fuel cell degradation by 87% and the electrolyzer degradation by 65%. As for the operating time of the electrolyzer, an increment of 65% was achieved, thus improving the quality of the produced hydrogen. The Fuel Cell's running time has been decreased by 59%. With the ambition to validate the models proposed and the associated commands, the development of this study gave rise to the creation of an experimental platform. Using this high-performance experimental platform, experimental tests were carried out and the results obtained are compared with those obtained by simulation under the same metrological conditions.  相似文献   
9.
Lithium zirconium phosphate (LiZr2P3O12) thin films have been prepared on platinized silicon substrates via a chemical solution deposition approach with processing temperatures between 700°C and 775°C. Films that were subject to a single high-temperature anneal were found to crystallize at temperatures above 725°C. Crystallization was observed in films annealed after each deposited layer at 700°C and above. In both cases, grain size was found to increase with annealing temperature. Ion conductivity was found to increase with annealing temperature in singly annealed films. In per-layer annealed films ion conductivity was found to initially increase then decrease with increasing annealing temperature. A maximum ion conductivity of 1.6 × 10−6 S/cm was observed for the singly annealed 775°C condition, while a maximum ion conductivity of 5.8 × 10−7 S/cm was observed for the 725°C per-layer annealed condition. These results are consistent with an increasing influence of cross-plane, internal interface resistance and vapor phase carrier loss in the per-layer annealed samples. This work demonstrates that post-deposition processing methods can strongly affect the ion conducting properties of LiZr2P3O12 thin films.  相似文献   
10.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号