首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513499篇
  免费   7822篇
  国内免费   1407篇
电工技术   9339篇
综合类   507篇
化学工业   72552篇
金属工艺   19751篇
机械仪表   14835篇
建筑科学   12124篇
矿业工程   2266篇
能源动力   14356篇
轻工业   45914篇
水利工程   5189篇
石油天然气   9261篇
武器工业   37篇
无线电   59356篇
一般工业技术   100402篇
冶金工业   103508篇
原子能技术   10531篇
自动化技术   42800篇
  2021年   4310篇
  2020年   3480篇
  2019年   4547篇
  2018年   7778篇
  2017年   7610篇
  2016年   7752篇
  2015年   5331篇
  2014年   9067篇
  2013年   23883篇
  2012年   14466篇
  2011年   19971篇
  2010年   15642篇
  2009年   17558篇
  2008年   17951篇
  2007年   17674篇
  2006年   15403篇
  2005年   14089篇
  2004年   13486篇
  2003年   13214篇
  2002年   11966篇
  2001年   12090篇
  2000年   10923篇
  1999年   11842篇
  1998年   32143篇
  1997年   22268篇
  1996年   16815篇
  1995年   12933篇
  1994年   11164篇
  1993年   10891篇
  1992年   7810篇
  1991年   7311篇
  1990年   7198篇
  1989年   6885篇
  1988年   6373篇
  1987年   5664篇
  1986年   5579篇
  1985年   6187篇
  1984年   5825篇
  1983年   5095篇
  1982年   4818篇
  1981年   4906篇
  1980年   4653篇
  1979年   4556篇
  1978年   4357篇
  1977年   5280篇
  1976年   6912篇
  1975年   3748篇
  1974年   3503篇
  1973年   3628篇
  1972年   2956篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Coupling of side chain dynamics over long distances is an important component of allostery. Methionine side chains show the largest intrinsic flexibility among methyl-containing residues but the actual degree of conformational averaging depends on the proximity and mobility of neighboring residues. The 13C NMR chemical shifts of the methyl groups of methionine residues located at long distances in the same protein show a similar scaling with respect to the values predicted from the static X-ray structure by quantum methods. This results in a good linear correlation between calculated and observed chemical shifts. The slope is protein dependent and ranges from zero for the highly flexible calmodulin to 0.7 for the much more rigid calcineurin catalytic domain. The linear correlation is indicative of a similar level of side-chain conformational averaging over long distances, and the slope of the correlation line can be interpreted as an order parameter of the global side-chain flexibility.  相似文献   
2.

The presence of Mn(II) in water exceeding the permitted concentration limits declared by the World Health Organization (WHO) influences individuals, animals, and the ecosystem negatively. Therefore, there is a necessity for an efficient material to eliminate this potentially toxic element from wastewater. We herein focused on the adsorptive removal of Mn(II) ions from polluted aqueous media using natural Egyptian glauconite clay (G) and its nanocomposites with modified chitosan (CS). We applied modified chitosan with glutaraldehyde (GL), ethylenediaminetetraacetic acid (EDTA), sodium dodecyl sulfate (SDS), and cetyltrimethyl ammonium bromide (CTAB). The utilized nanocomposites were referred to as GL-CS/G, EDTA-GL-CS/G, SDS-CS/G, and CTAB-CS/G, respectively. The point of zero charge values of the materials were estimated. The adsorption properties of the G clay and its nanocomposites toward the removal of Mn(II) ions from polluted aqueous media as well as the adsorption mechanism were explored using a batch technique. The glauconite (G) and its nanocomposites: GL-CS/G, CTAB-CS/G, EDTA-GL-CS/G, and SDS-CS/G, exhibited maximum adsorption capacity values of 3.60, 24.0, 26.0, 27.0, and 27.9 mg g?1, respectively. The adsorption results fitted well the Langmuir isotherm and pseudo-second-order kinetic models. The estimated thermodynamic parameters: ΔH° (from 1.03 to 5.55 kJ/mol) and ΔG° (from ? 14.5 to ? 18.8 kJ/mol), indicated that Mn(II) ion adsorption process was endothermic, spontaneous, and physisorption controlled. Furthermore, the obtained adsorption results are encouraging and revealing a great potentiality for using the modified adsorbents as accessible adsorbents for Mn(II) ion removal from polluted aqueous solutions, depending on their reusability, high stability, and good adsorption capacities.

Graphic Abstract
  相似文献   
3.
Nutrient Cycling in Agroecosystems - Reducing agriculturally derived diffuse contaminant losses (via non-point sources) from land to water has proven difficult for decades. Owing to the diversity...  相似文献   
4.
Inhibition of PSD-95 has emerged as a promising strategy for the treatment of ischemic stroke, as shown with peptide-based compounds that target the PDZ domains of PSD-95. In contrast, developing potent and drug-like small molecules against the PSD-95 PDZ domains has so far been unsuccessful. Here, we explore the druggability of the PSD-95 PDZ1-2 domain and use fragment screening to investigate if this protein is prone to binding small molecules. We screened 2500 fragments by fluorescence polarization (FP) and validated the hits by surface plasmon resonance (SPR), including an inhibition counter-test, and found four promising fragments. Three ligand efficient fragments were shown by 1H,15N HSQC NMR to bind in the small hydrophobic P0 pockets of PDZ1-2, and one of them underwent structure-activity relationship (SAR) studies. Overall, we demonstrate that fragment screening can successfully be applied to PDZ1-2 of PSD-95 and disclose novel fragments that can serve as starting points for optimization towards small-molecule PDZ domain inhibitors.  相似文献   
5.
Silicon - Feeling prone to stress differs with plant production stage, water scarcity near commencement of grain filling phase has a significant reduced grain yield through fewer endosperm and sink...  相似文献   
6.
Silicon - Magnesium calcium silicate nanostructures (MCSNS) loaded with (0.0, 0.6, 0.9, and 1.2 wt%) of Cephradine-drug consisting of mesoporous particles were functionally prepared by sol-gel...  相似文献   
7.
Surface patterning is a recent promising approach to promote performance of pressure-driven membranes in water treatment and desalination. Nevertheless, knowledge about foulant deposition mechanisms, especially at early stage of filtration, is still lacking. The applicability of particle imaging velocimetry to study fluid characteristics atop surface patterned thin-film composite membranes was investigated at different operating conditions. This work is an important first step toward reliable understanding of the impacts of topographical membrane surface modification on hydrodynamic conditions and foulant deposition mechanisms.  相似文献   
8.
The effects of natural disasters, pandemic-induced lockdowns, and other disruptions often cascade across networks. In this work, we use minimum cost of resilience (MCOR) and operation-based resilience metrics to quantify network performance against single-connectivity failures and identify critical connections in interconnected networks. MCOR corresponds to the minimum additional infrastructure investment that is required to achieve a certain level of resilience. To guarantee MCOR, we incorporate the metrics in a multi-scenario mixed-integer linear program (MILP) that accounts for resilience in the design phase of interconnected networks. The goal is to obtain optimal generation and transportation capacities with flexible operation under all single-connectivity disruption scenarios. We demonstrate the applicability of our resilience-aware framework on a water-energy nexus (WEN) example focusing on grass-root design and retrofitting. We further apply the framework to analyze a regional WEN and observe that it is possible to achieve “full” resilience in the expense of additional regional investments.  相似文献   
9.
Cell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 μm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation. Of particular note, applications involving long-term in vitro cultures, modular bioinks, high-throughput screenings, and formation of 3D cellular microenvironments can be tuned independently to suit the needs of individual cells and experimental goals. In this progress report, an overview of established materials and techniques used to fabricate single-cell microgels, as well as insight into potential alternatives is provided. This focused review is concluded by discussing applications that have already benefited from single-cell microgel technologies, as well as prospective applications on the cusp of achieving important new capabilities.  相似文献   
10.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号