首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   5篇
综合类   1篇
化学工业   3篇
轻工业   19篇
无线电   1篇
自动化技术   1篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.

Background  

Poor growth of children in developing countries is a major public health problem associated with mortality, morbidity and developmental delay. We describe growth up to three years of age and investigate factors related to stunting (low height-for-age) at three years of age in a birth cohort from an urban slum.  相似文献   
2.
3.
4.
Railway Engineering Science - Traffic management and drainage system are two vital issues for any metropolitan city. Like other big cities, Karachi is also facing problems due to lack of traffic...  相似文献   
5.
Microencapsulation is a process of building a functional barrier between the core and wall material to avoid chemical and physical reactions and to maintain the biological, functional, and physicochemical properties of core materials. Microencapsulation of marine, vegetable, and essential oils has been conducted and commercialized by employing different methods including emulsification, spray‐drying, coaxial electrospray system, freeze‐drying, coacervation, in situ polymerization, melt‐extrusion, supercritical fluid technology, and fluidized‐bed‐coating. Spray‐drying and coacervation are the most commonly used techniques for the microencapsulation of oils. The choice of an appropriate microencapsulation technique and wall material depends upon the end use of the product and the processing conditions involved. Microencapsulation has the ability to enhance the oxidative stability, thermostability, shelf‐life, and biological activity of oils. In addition, it can also be helpful in controlling the volatility and release properties of essential oils. Microencapsulated marine, vegetable, and essential oils have found broad applications in various fields. This review describes the recognized benefits and functional properties of various oils, microencapsulation techniques, and application of encapsulated oils in various food, pharmaceutical, and even textile products. Moreover, this review may provide information to researchers working in the field of food, pharmacy, agronomy, engineering, and nutrition who are interested in microencapsulation of oils.  相似文献   
6.
7.
Shabbar Syed 《Fuel》2011,90(4):1631-1637
Thermogravimetric (TG) data of oil shale obtained at MI (Waste to Energy laboratory) were studied to evaluate the kinetic parameters for El-Lujjun oil shale samples. Different heating rates were employed simulating pyrolysis reaction using Nitrogen as purging gas up to ∼800 °C. The extent of char combustion was found out by relating TG data for pyrolysis and combustion with the ultimate analysis. Due to distinct behavior of oil shale during pyrolysis, TG curves were divided into three separate events: moisture release; devolatization; and evolution of fixed carbon/char, where for each event, kinetic parameters, based on Arrhenius theory, were calculated. Three methods were used and compared: integral method; direct Arrhenius plot method; and temperature integral approximation method. Results showed that integral method is closer to the experiment, while no relationship was observed between activation energy and the heating rate.  相似文献   
8.
9.
The soy protein hydrolysate (HSPI) was first prepared using Neutrase and then glycosylated with maltodextrin (Md) at different incubation times (120, 180, 240, 270, and 300 min). The effect of glycosylation following limited enzymatic hydrolysis on the physicochemical properties of HSPI was investigated. The sodium dodecylsulphate polyacrylamide gel electrophoresis was used to confirm the covalent conjugation and determine the changes in the molecular weight of soybean protein isolate (SPI) during the structural modification. Surface hydrophobicity (H 0) measurements revealed that limited hydrolysis as well as glycosylation at 120 min increased H 0; however, further glycosylation decreased H 0 due to the shielding effect of the maltodextrin bound. The increased secondary, tertiary conformation stability was confirmed by the far-UV circular dichroism spectroscopy, the intrinsic fluorescence analysis, and the results of differential scanning calorimetry. Subsequently, the functional properties including solubility, heat stability, emulsifying property, as well as antioxidant activities were evaluated. Results indicated that the emulsifying activity index was improved notably from 86.13 ± 1.31 m2/g for the native SPI to 109.07 ± 4.45 m2/g for HSPI–Md conjugates after 270-min incubation. Additionally, the glycosylation had obviously positive effects on the antioxidant activities of the modified SPI proteins. Therefore, HSPI–Md conjugates might be used as potential emulsifiers or multifunctional wall materials for the microencapsulation of bioactive ingredients.  相似文献   
10.
Ascorbic acid (AA) was encapsulated in glassy low‐dextrose equivalent maltodextrin matrix by extrusion. The effects of formulation parameters, i.e., core/matrix ratio and water content were mainly investigated on Tg of extrudate. The AA yield, AA content and water content of the products together with extrusion parameters were also determined and compared for different formulations. The Tg of extrudates containing water content from 7.860% to 10.430% ranged from 43.17 to 27.48 °C, and the Tg of extrudates which core to matrix from 1:4 to 1:8 ranged from 35.79 to 41.64 °C. AA yield of all extrudates is above 96%, and with increasing water content, there was a slight decrease in the AA yield. The increased water level and core/matrix ratio reduce specific mechanical energy and die head pressure. X‐ray diffraction and scanning electron microscopy suggested that AA was most likely molecularly dispersed within the maltodextrin indicating the miscibility of AA and maltodextrin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号