首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  轻工业   2篇
  2011年   1篇
  1986年   1篇
排序方式: 共有2条查询结果,搜索用时 118 毫秒
1
1.
Yeast/E. coli shuttle vectors with multiple unique restriction sites   总被引:239,自引:0,他引:239  
Two yeast/E. coli shuttle vectors have been constructed. The two vectors, YEp351 and YEp352, have the following properties: (1) they can replicate autonomously in Saccharomyces cerevisiae and in E. coli; (2) they contain the beta-lactamase gene and confer ampicillin resistance to E. coli; (3) they contain the entire sequence of pUC18; (4) all ten restriction sites of the multiple cloning region of pUC18 including EcoRI, SacI, KpnI, SmaI, BamHI, XbaI, SalI, PstI, SphI and HindIII are unique in YEp352; these sites are also unique in YEp351 except for EcoRI and KpnI, which occur twice; (5) recombinant plasmids with DNA inserts in the multiple cloning region of YEp351 and YEp352 can be recognised by loss of beta-galactosidase function in appropriate E. coli hosts; (6) YEp351 and YEp352 contain the yeast LEU2 and URA3 genes, respectively, allowing for selection of these auxotrophic markers in yeast and E. coli; (7) both plasmids are retained with high frequency in yeast grown under non-selective conditions indicative of high plasmid copy number. The above properties make the shuttle vectors suitable for construction of yeast genomic libraries and for cloning of DNA fragments defined by a large number of different restriction sites. The two vectors have been further modified by deletion of the sequences necessary for autonomous replication in yeast. The derivative plasmids YIp351 and YIp352 can therefore be used to integrate specific sequences into yeast chromosomal DNA.  相似文献
2.
This article presents research targeted toward the isolation and detection of unique molecular structures from what is believed to be the world's most complex organic mixture: dissolved organic matter (DOM). Hydrophilic interaction chromatography (HILIC) was used to separate Suwannee River DOM (SRDOM) into 80 fractions, simplified to the extent that detection with nuclear magnetic resonance spectroscopy (NMR) results in many sharp signals that are indicative of individual compounds, some of which are identifiable with multidimensional NMR. Parallel factor analysis (PARAFAC) of fluorescence excitation-emission matrices (EEMs) was additionally employed on HILIC-simplified fractions to further confirm the effectiveness of the HILIC separations as well as draw insight into how structural characteristics relate to DOM fluorescence signals. Findings suggest that material believed to be derived from both cyclic and linear terpenoids was dominant in the most hydrophobic fractions as were the majority of the fluorescence signals, whereas hydrophilic material was highly correlated with carbohydrate-type structures as well as high contributions from amino acid fluorescence. NMR spectra of DOM, typically featureless mounds, are substantially more detailed with HILIC-simplified fractions to the point where hundreds of signals are present and 2D NMR correlations permit significant structural identifications.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号