首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4349篇
  免费   317篇
  国内免费   208篇
电工技术   531篇
技术理论   1篇
综合类   246篇
化学工业   406篇
金属工艺   315篇
机械仪表   338篇
建筑科学   429篇
矿业工程   198篇
能源动力   106篇
轻工业   213篇
水利工程   257篇
石油天然气   298篇
武器工业   52篇
无线电   383篇
一般工业技术   277篇
冶金工业   181篇
原子能技术   35篇
自动化技术   608篇
  2024年   5篇
  2023年   115篇
  2022年   88篇
  2021年   99篇
  2020年   135篇
  2019年   178篇
  2018年   205篇
  2017年   81篇
  2016年   101篇
  2015年   141篇
  2014年   282篇
  2013年   238篇
  2012年   275篇
  2011年   261篇
  2010年   269篇
  2009年   260篇
  2008年   225篇
  2007年   284篇
  2006年   235篇
  2005年   244篇
  2004年   222篇
  2003年   170篇
  2002年   148篇
  2001年   105篇
  2000年   129篇
  1999年   84篇
  1998年   50篇
  1997年   36篇
  1996年   35篇
  1995年   34篇
  1994年   20篇
  1993年   18篇
  1992年   21篇
  1991年   17篇
  1990年   12篇
  1989年   14篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   7篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有4874条查询结果,搜索用时 16 毫秒
1.
2.
目的 研究TiB2.TiAl3/2024Al复合材料多向锻造金属流动行为,以及锻造温度、锻造道次对复合材料再结晶行为及基体晶粒尺寸的影响。方法 将TiB2.TiAl3/2024Al复合材料的本构模型及再结晶动力学模型导入Deform-3D有限元模拟软件中,建立复合材料多向锻造的数值仿真模型。通过数值仿真方法分析锻造温度和锻造道次对复合材料多向锻造组织的影响规律。结果 多向锻造变形过程中,剧烈塑性变形和动态再结晶主要分布在材料试样内部的呈“X”形状的区域,单次下压最大等效应变为1.42。锻造1道次时,锻造温度从350 ℃升至500 ℃,再结晶体积分数从65.0%升至69.7%,平均晶粒尺寸由350 ℃的24.6 μm降至500 ℃的21.5 μm。在450 ℃锻造温度下,1道次锻造后,再结晶体积分数为69.2%,平均晶粒尺寸由铸态的45.0 μm减小到21.9 μm;2道次锻造后再结晶体积分数为89.5%,平均晶粒尺寸为16.3 μm;3道次锻造后坯料的再结晶体积分数为96.1%,平均晶粒尺寸为14.3 μm。与试验结果比较可知,模拟结果准确可靠。结论 提高锻造温度和增大锻造道次可以促进试样发生动态再结晶,从而达到细化晶粒的目的。  相似文献   
3.
在室温下对挤压态AZ31合金沿棒材径向进行拉伸变形(RDT试样)和沿挤压方向进行压缩变形(EDC试样),2种变形应变速率均为10-4 s-1。采用金相显微镜(OM)和背散射电子衍射(EBSD)研究了变形过程中合金的孪生行为。结果表明:拉伸孪晶影响了合金的屈服点,EDC试样的屈服点为139 MPa,高于RDT试样的屈服点88 MPa。2种变形应力状态下,随应变增加,合金的应变硬化速率都是先快速下降,但EDC试样的硬化速率随后明显上升,并一直持续到断裂,而RDT试样则几乎保持稳定的硬化速率。EDC试样硬化速率的升高与合金中产生大量的拉伸孪晶以及孪晶织构诱导的滑移行为有关。基于EBSD测试结果,给出了一种计算晶粒内孪晶体积分数的方法,得出RDT试样在应变为0.04时,(0002)晶粒中拉伸孪晶体积分数约为45%。  相似文献   
4.
通过热膨胀试验、显微组织分析和硬度测试,分析了冷却速率和Ti元素对两种22MnB5热成形试验钢相变温度、显微组织、析出相以及硬度等的影响,并绘制了CCT曲线。结果表明,当冷却速率低于5 ℃/s时,试验钢的显微组织主要为铁素体和珠光体;冷却速率达到5 ℃/s后开始形成贝氏体;冷却速率达到30 ℃/s时,获得单一马氏体组织。Ti微合金化可降低Ms点,并通过析出Ti(C, N) 相细化奥氏体晶粒,从而获得细小的马氏体板条,产生的析出强化和细晶强化效应提高了试验钢的强度。  相似文献   
5.
为缓解中心服务器的压力,制定合理的调度方案,基于混合蚁群优化算法提出了边缘计算细粒度任务调度方法。描述边缘计算任务调度问题,并设置假设条件,简化调度求解难度。通过计算任务的优先指数,按照从大到小的顺序排列后组成任务队列。分析边缘服务器性能特征,明确边缘服务器处理能力。构建能耗以及时延多目标函数,并设置约束条件,利用混合蚁群优化算法求解多目标函数,完成边缘计算细粒度任务调度方案设计。结果表明:该方法应用下的任务调度能耗和时延更小,说明所提方法性能更优,所获得的调度方案更合理。  相似文献   
6.
吉木萨尔凹陷芦草沟组甜点段微小断层非常发育,严重影响开发效果。以往依赖常规测井、成像测井以及野外露头识别微小断层,仅限于单井裂缝识别,无法有效获得微小断层的平面展布形态。目前主要利用叠前/叠后地震数据计算波形的几何特征识别断层,但对地震数据信噪比要求较高,且难以预测断层的开启性。为此,通过基于横、纵向组合的卡尔曼滤波技术得到最大正、负曲率属性,同时结合实钻井井漏、压裂窜扰以及地层倾角等信息研究断层开启性。具体流程为:首先,应用横、纵向组合卡尔曼滤波技术对原始地震数据滤波,由于断层各向异性较弱,为保证资料具有较高的信噪比,不对滤波后地震数据进行分方位处理,直接求取最大正、负曲率体;其次,利用构造解释层位提取甜点段平面曲率属性,识别断层及断层平面组合;再次,根据识别的断层统计井轨迹在断点附近的钻井井漏、压裂窜扰以及地层倾角等数据;最后,统计曲率类型、曲率值以及断层走向与钻井井漏、压裂窜扰、地层倾角的关系。得到以下认识:①最大正曲率值大于500ft-1的北东—南西向断层多为开启性断层,最大正曲率值约为300 ft-1的北西—南东向和北东—南西向两组断层多为半开启性断层,最大负曲率绝对值大于300 ft-1的近南北向以及北东—南西向断层多为封闭性断层;②断层附近地层倾角变化较大,曲率值越大,倾角变化越大。  相似文献   
7.
我国非常规油气资源储量丰富,探索经济有效开发的钻井完井技术体系,是加快其勘探开发进程与规模上产的关键。详细介绍了我国已形成的埋深3 500 m以浅非常规油气钻井完井技术体系,包括三维丛式井水平井井眼轨道设计、地质工程一体化设计与作业、强化钻井参数提速、深层页岩气控温钻井、地质导向钻井、高性能钻井液和高效固井等关键技术,指出目前仍存在工厂化作业模式未实现最优化、长水平段水平井钻井可重复性差、“一趟钻”技术与配套装备不成熟、抗高温高压材料及配套钻井工具欠缺等问题,提出了加快推广大平台丛式水平井工厂化作业模式、持续优化长水平段水平井钻井技术、践行地质工程一体化理念和开展抗高温高压材料研发及配套工具研制等发展建议,以大幅提升单井产量和采收率,实现非常规油气的高效勘探开发。   相似文献   
8.
目的 寻找合适的预处理方式,从而获得感官评分相对最高的干制品。方法 以干燥速率、体积收缩率、色差、褐变度和感官评分为评价指标,分析烫漂、汽蒸、超声、渗透和冻融等5种预处理方式对火龙果热泵干燥品质的影响。结果 所有经过预处理实验组火龙果的干燥速率和体积收缩率均大于未经预处理对照组火龙果的干燥速率和体积收缩率,其中经过冻融1次预处理的实验组火龙果的干燥速率和体积收缩率相对最大,干燥时间和体积分别减小了76.6%和93.3%;经过醋酸锌(质量分数为0.2%)渗透预处理后实验组火龙果的色差和褐变度相对最小,分别为24.893和17.225;采用模糊综合评价法所得权重集W=(0.23,0.33,0.26,0.18),在权重集的基础上计算可知,醋酸锌(质量分数为0.2%)渗透预处理实验组火龙果的感官评分相对最高,达到71.55。结论 经过醋酸锌(质量分数为0.2%)渗透预处理后火龙果的品质相对最佳。  相似文献   
9.
本文通过研究固废混凝土初期深加工工艺和设备,对废弃混凝土再利用物料分选进行研究分析:大于2.36 mm较大颗粒采用机械筛分的方法,小于600 μm的微粉采用风力分选的方法;为解决1.18 mm颗粒分离问题,分选采用风选加机械同步分选模式,分离出1.18 mm切割粒径的产品。通过采用分选技术,区段内粒度控制严格,满足标准要求。  相似文献   
10.
阐述了3D打印技术的种类,介绍了熔融沉积成型(FDM)技术的原理、特点及其目前存在的问题;从控制方法(温度控制、运动控制、路径控制)和运动机构(送料机构、喷嘴、运动机构)两个方面系统综述了国内外FDM 3D打印设备的最新研究进展;最后,指出了目前FDM 3D打印设备所面临的挑战及需要解决的问题,展望了FDM 3D打印设备未来的发展方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号