首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   8篇
  国内免费   2篇
综合类   3篇
化学工业   1篇
矿业工程   23篇
石油天然气   6篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有33条查询结果,搜索用时 14 毫秒
1.
为了促进彬长矿区胡家河井田低煤阶煤层气开发实践,核定采收率,对4号煤层进行了样品采集、加工,完成了不同温度煤层气吸附/解吸试验,利用吸附/解吸结果绘制吸附等压线。结果表明:吸附量随着温度的升高而减小,低压阶段解吸滞后明显,高压阶段解吸过程与吸附过程可逆;CH_4吸附量与温度的关系可用二次函数表征,当温度大于临界温度(-82.6℃)时,最大吸附量沿抛物线分布;温度低于临界温度时,最大吸附量沿直线分布;最后得出CH_4吸附量的计算方法,解决了采收率核定时低阶煤含气量测试数据不准的问题。  相似文献   
2.
煤层气的解吸作用的研究可以较好的预测产气量和气量持续的周期。通过对数个地区煤储层的较为活跃煤层气进行了吸附解吸实验,其结果表明煤层气的降压解吸的数学表达式服从 的数学模型,在煤层气井排水降压过程中,采用此模型对煤层气解吸量的计算,揭示了降压解吸滞后是由于剩余含气量c的存在,解吸量与最大含气量a线性相关,最大解吸率为c/a,生产上要提高解吸量只能通过改变b值。通过两口垂直井、两口水平井的排采实践得到验证。  相似文献   
3.
为了探究水分含量和负压对煤层气等温吸附、解吸特征的影响,采用大样量煤层气吸附/解吸仿真试验设备对鄂尔多斯盆地东缘北部煤矿煤样进行煤层气常规等温吸附解吸过程和负压解吸过程的实验室模拟,通过将煤样进行处理得到干燥煤样、平衡水煤样、饱和水煤样3种不同含水饱和度煤样,分别对其进行等温吸附测试、常规等温解吸测试和负压解吸测试,得到了煤样在不同含水饱和度、不同负压条件下的压力与吸附量实测数据,并采用不同的吸附/解吸方程式进行拟合。通过对比分析,研究了水分对等温吸附过程、解吸过程以及负压对解吸过程的影响,并从分子间作用力的角度解释了水分对等温吸附解吸过程的影响。结果表明:煤样解吸过程与吸附过程不可逆,存在解吸滞后;由于水分子与煤分子间的作用力大于甲烷分子与煤分子间的作用力,水分在与甲烷的竞争吸附中具有优势,煤样含水率越高,其吸附甲烷的能力越低;煤样含水率较低时,含水对煤岩降压解吸影响不明显;当煤样含水率高于某一值时,外来水分抑制煤层气降压解吸,分析认为这可能与煤样的物质组成和煤分子结构有关;由于水分对甲烷的置换解吸作用,若水力压裂过程中压裂液滤失严重,将降低煤层吸附气量,延长排水降压阶段,减少累计产气量,因此应严格控制压裂液滤失;负压解吸阶段,单位压降引起的解吸量更大,说明负压排采增产措施具有潜力。  相似文献   
4.
 煤的孔隙特征是影响瓦斯突出的重要因素。本文对三种不同变质成因的无烟煤进行了低温液氮吸附实验,分析了不同变质成因无烟煤的孔隙特征。提出了无烟煤低温液氮脱附回线区别于烟煤的新的类型。实验结果表明无烟煤的孔隙主要以微孔为主,孔隙类型主要为狭窄的缝形孔。深成变质作用无烟煤的孔隙结构要比区域岩浆热变质作用无烟煤的孔隙结构复杂且易发生瓦斯突出。  相似文献   
5.
为研究黄陇煤田低阶煤甲烷解吸滞后规律并定量评价解吸滞后,采集郭家河井田3号煤层煤样(GJH3)、大佛寺井田4号煤层煤样(DFS4)与黄陵二矿井田2号煤层煤样(HL2),采用液氮吸附与等温吸附/解吸试验,分析其孔隙结构特征与吸附/解吸特征,基于Langmuir方程与热力学计算结果,定量评价解吸滞后与吸附/解吸前后吸附热差异.结果表明:(1)温度相同时,煤样吸附能力大小顺序为DFS4,HL2,GJH3,煤样残余吸附量大小顺序为HL2,GJH3,DFS4,温度对残余吸附量的影响略有区别,温度并非与残余吸附量呈线性负相关关系,因此需要综合考虑温度对解吸的影响.(2)DFS4,GJH3,HL2的解吸滞后系数为0.4~0.6,其中,20℃时HL2解吸滞后系数最大,吸附/解吸可逆性较差;GJH3解吸滞后系数最小,吸附/解吸可逆性最好;解吸滞后系数随温度升高而减小,吸附/解吸可逆性随温度升高变好.(3)解吸时的等量吸附热均大于吸附时的等量吸附热,解吸需要从体系外吸收热量,吸附和解吸过程的能量差异可能是解吸滞后的关键因素.  相似文献   
6.
彬长低阶煤高瓦斯矿区瓦斯地质及其涌出特征   总被引:2,自引:0,他引:2       下载免费PDF全文
蔺亚兵  秦勇  王兴  段中会  马东民 《煤炭学报》2019,44(7):2151-2158
针对近年来低煤阶煤矿区高瓦斯矿井数量增多,但瓦斯赋存规律及涌出特征知之甚少的问题,以陕西省黄陇煤田彬长矿区为例,依据勘查阶段和煤矿生产过程中测试的瓦斯参数及抽采数据,总结分析低煤阶煤矿区矿井瓦斯参数及瓦斯富集规律,讨论地质因素对低煤阶煤矿区瓦斯涌出特征的影响及其机理。研究表明,低阶煤煤化程度低,孔隙度较高,游离气含量高,煤层透气性好,瓦斯富集规律和涌出特征明显区别于中、高阶煤。彬长矿区发育大佛寺瓦斯富集区、小庄-亭南瓦斯富集区、胡家河瓦斯富集区3个瓦斯富集区。地质构造是控制低煤阶煤矿区矿井瓦斯富集的主要因素,煤质特征决定了低煤阶矿区瓦斯赋存状态。瓦斯涌出量同时受控于开采层瓦斯含量、煤厚、煤层底板标高、地质构造等地质因素。开采煤层原位瓦斯含量越高,煤层厚度越大,煤层底板标高越大,回采工作面瓦斯涌出量越大。褶曲翼部瓦斯涌出量明显要大于向斜轴部宽缓区域,翼部地层倾角越大,回采工作面瓦斯涌出量越大,褶曲对煤层倾角的影响控制了低阶煤瓦斯涌出特征。断层附近受游离气含量的影响,易造成回采工作面瓦斯涌出量突然增大。综采放顶煤采煤工艺在显著提高煤炭产量的同时,也造成了近年来低煤阶煤矿区高瓦斯矿井数量增多。  相似文献   
7.
基于多孔介质及Terzaghi有效应力原理,建立煤层气开采中煤岩骨架本构模型,分析煤岩骨架的应力形变;同时,建立了孔隙度与渗透率的动态模型,分析煤层气排采过程中煤层物性的变化;依据流体力学连续性方程,建立煤层流体的渗流场方程。结合模型的辅助方程及定解条件,给出了单相(多相)煤岩流固耦合渗流的数学模型。  相似文献   
8.
为系统研究煤层气井中多相流条件下煤粉启动-运移规律,以捞砂煤粉为研究对象,通过控制不同相流(液固两相、气液固三相)控制煤粉产出,开展多相流条件下不同粒径(小于0.075 mm、0.075~0.25 mm、0.25~0.85 mm、大于0.85 mm)煤粉启动-运移试验模拟,分析流量、压差、管道倾角、粒度等因素对煤粉启动-运移的影响。研究结果表明:液固两相流下,随着液体流量逐渐增大,煤粉由静止状态向滑动—间歇滚动—滚动—层移—层移+悬移—悬移状态逐渐过渡。煤粉粒径越小,管道倾斜角度越小,启动流量越低;流量与压差呈现很好的线性关系,并受管道倾角影响;煤粉的粒径和管道倾角对煤粉的启动-运移难易程度具有重要影响,但二者的影响较为复杂,不同粒径煤粉的启动-运移流量与管道倾角之间并非简单的线性关系;不同角度下煤粉颗粒粒径(除大于0.85 mm大颗粒煤粉外)与启动流量关系可用一次线性关系表征,同时方程也可用于预测特定管道倾角下不同粒径煤粉对应的启动流量。气液固三相流下,煤粉启动-运移主要控制因素为流型,而流型受气液流量比和管道倾角影响,主要包括气泡流、塞状流、分层流、波状流、弹状流等流型,各流型携粉运移能力为气驱水分层流弹状流塞状流气泡流分层流;随气液流量比增大,压差先快速减小再趋于平缓,最终微弱反弹,管道倾斜角度越小,压差下降越快。  相似文献   
9.
以大佛寺4#不粘煤样为研究对象,进行4#不粘煤空气干燥基样和平衡水分样等温吸附实验,计算吸附势和吸附空间,得出吸附特征曲线,以期预测大佛寺4#不粘煤层中煤层气资源/储量,验证吸附理论的可靠性。实验结果显示:对于同1种煤样,吸附势与环境温度无关系,煤中水分大小对吸附势影响较大;实验进一步证明煤-甲烷分子之间作用力主要为色散力,吸附过程为物理吸附;根据吸附特征曲线计算所得极限吸附量与常规Langmuir方程拟合所得结果十分相近,初步证明吸附特征曲线所得极限吸附量预测煤吸附甲烷最大能力、预测煤层气资源/储量是可行的方法。  相似文献   
10.
多尺度微观孔隙结构对低阶煤储层煤层气吸附/解吸过程的研究具有重要意义。以黄陇侏罗系煤田和陕北侏罗系煤田低阶煤为研究对象,采用压汞、液氮吸附和CO2吸附等测试手段表征低阶煤储层的孔径分布、孔隙类型等参数,联合核磁共振测试定量分析低阶煤阶段孔径和多尺度孔径分布特征。结果表明,低阶煤孔隙以微孔为主,大孔次之。微孔、大孔、介孔对比表面积的贡献率依次减小。低阶煤储层孔隙类型以两端开口的“柱状孔”和“墨水瓶孔”为主,孔隙连通性较好。核磁共振法获取样品的T2c截止值为1.4~155.2 ms,变化较大,束缚流体饱和度(BVI)为79.21%~96.96%,可动流体饱和度低。低阶煤储层的孔隙结构复杂多样,单一测试技术与联合计算表征方法在表征低阶煤储层的孔隙结构时差异较大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号