首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   2篇
  无线电   2篇
  2022年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
针对现有穿墙雷达三维稀疏成像中,存在网格时延构建字典矩阵所需内存过大以及凸优化稀疏成像算法阈值参数不确定影响重建图像质量的问题,提出了一种基于衍射层析稀疏模型的学习近似消息传递三维成像方法。该方法在衍射层析成像算法上通过构造快速傅里叶变换算子来建立三维成像稀疏模型,然后修正近似消息传递算法求解稀疏解,并将其迭代过程映射成多层神经网络,最后通过数据驱动自适应学习多层神经网络中的可调参数,从而实现三维学习成像。仿真和实验数据处理结果表明,该方法不仅减小了系统所需内存,还避免了参数的人工调整对成像质量的影响。  相似文献
2.
在穿墙雷达成像中,事先有效分离墙体回波与目标信号,可以避免它们在后续的建筑物布局反演和内部目标成像中的相互影响。然而,现有的稀疏分离方法往往需要人工选择阈值参数,在一定程度上影响了分离效果,为此提出一种墙体回波与目标信号的学习分离方法。该方法将两信号的分离视为一种联合低秩-稀疏约束问题,使用迭代软阈值分离算法求解稀疏解,然后把稀疏解的迭代过程映射成多层神经网络中的每一层,并用数据集自适应训练所有层中的阈值参数。仿真和实测数据处理结果表明,该方法与人工选择阈值参数相比,有效提高了墙体与目标回波信号的分离效果。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号