首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
无线电   13篇
  2023年   2篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
应用正硅酸乙酯(TEOS)LPCVD技术实现二氧化硅在SiC晶片表面的淀积,在一定程度上弥补了SiC氧化层过薄和PECVD二氧化硅层过于疏松的弊端。采用TEOS LPCVD技术与高温氧化技术的合理运用,既保证了氧化层介质的致密性和与SiC晶片的粘附能力,又提高了器件的电性能和成品率,同时避免了为获得一定厚度氧化层长时间高温氧化的不足。采用此技术后,SiC芯片的直流成品率得到提高,微波功率器件的对比流片结果显示微波性能也得到了明显的提升,功率增益比原工艺提高了1.5 dB左右,功率附加效率提升了近10%。  相似文献   
2.
国产4H-SiC SI衬底MESFET外延生长及器件研制   总被引:2,自引:0,他引:2  
以国产衬底实现SiC加工工艺链为目标,采用国产4H-SiC半绝缘衬底材料外延得到4H-SiC MESFET结构材料.外延片XRD半宽43.2 arcs,方块电阻121点均匀性18.39%,随后制备出的具有直流特性的4H-SiC MESFET器件管芯,器件总栅宽250 μm,饱和电流密度680 mA/mm,跨导约为20 mS/mm,在20 V下的栅漏截止漏电为10 μA,2 mA下栅漏击穿电压为80 V.比例占总数的70%以上.初步实现从衬底到外延,进而实现器件的完整工艺链,为进一步的工艺循环打下良好基础.  相似文献   
3.
S波段脉冲大功率SiC MESFET   总被引:3,自引:3,他引:0  
采用自主开发的3英寸(75mm)SiC外延技术和SiC MESFET的设计及工艺加工技术,成功地实现了S波段中长脉宽条件下(脉宽300μs,占空比10%),输出功率大于200W,功率增益大于11dB,功率附加效率大于30%的性能样管,脉冲顶降小于0.5dB,实现了大功率输出条件下的较高功率增益和功率附加效率及较小的脉冲顶降,初步显示了SiC功率器件的优势。器件设计采用多胞合成技术,为减小引线电感对功率增益的影响,采用了源引线双边接地技术;为提高器件的工作频率,采用了电子束写栅技术;为提高栅的可靠性,采用了加厚栅金属和国家授权的栅平坦化发明专利技术;同时采用了以金为主体的多层难熔金属化系统,提高了器件的抗电迁徙能力。  相似文献   
4.
SiG高温氧化的研究   总被引:1,自引:1,他引:0  
热氧化是碳化硅晶片工艺中一种常用的工艺,但基于硅工艺的氧化温度一般都相对较低,此温度下,碳化硅氧化缓慢,在很多情况下很难满足工艺需求.利用新设计的高温氧化设备对碳化硅晶片进行不同温度下的氧化实验.实验结果显示,高温下,碳化硅氧化速度加快,温度的增加对氧化速度影响极大,以1 200℃时的氧化速率为基准,1 250℃时的氧化速率是1 200℃时的1.5倍;1 300℃下的氧化速率能达到1 200℃的2倍;而在1 350 ℃时,氧化速度已经将近1 200 ℃时的3倍.  相似文献   
5.
提高SiC MESFET栅金属平坦性的方法   总被引:2,自引:0,他引:2  
SiC金属-半导体场效应晶体管的工艺研制中,通常需要有源区之间的隔离。现常用刻蚀隔离的方法,但这一方法存在细栅条跨越隔离台阶的问题,若隔离台阶太陡,则栅金属在台阶处连续性较差,易产生电迁徙,器件工作时首先在此处烧毁,使器件失效。设计了几种提高栅金属平坦性的方法:通过优化台上掩模层台阶倾斜角以及调整刻蚀ICP,RIE功率可以实现18°左右倾斜台阶;通过类平坦化技术可以将绝缘介质淀积到台下区,基本实现无台阶;利用离子注入隔离取代刻蚀隔离则可以真正实现无台阶。实验验证以上方法可以有效提高栅金属的平坦性。  相似文献   
6.
SiC MESFET工艺技术研究与器件研制   总被引:3,自引:1,他引:2  
针对SiC衬底缺陷密度相对较高的问题,研究了消除或减弱其影响的工艺技术并进行了器件研制.通过优化刻蚀条件获得了粗糙度为2.07 nm的刻蚀表面;牺牲氧化技术去除刻蚀带来的表面损伤层,湿氧加干氧的氧化方式生长的SiO2钝化膜既有足够的厚度又保证了致密性良好的界面,减小了表面态对栅特性和沟道区的影响,获得了理想因子为1.17,势垒高度为0.72 eV的良好的肖特基特性;等平面工艺有效屏蔽了衬底缺陷对电极互连引线的影响,减小了反向截止漏电流,使器件在1 mA下击穿电压达到了65 V,40 V下反向漏电流为20μA.为了提高器件成品率,避免或减小衬底缺陷深能级对沟道电流的影响,使用该工艺制备的小栅宽SiCMESFET具有195 mA/mm的饱和电流密度,-15 V的夹断电压.初步测试该器件有一定的微波特性,2 GHz下测试其最大输出功率为30 dBm,增益大于5 dB.  相似文献   
7.
S波段连续波SiC功率MESFET   总被引:1,自引:1,他引:0  
利用国产SiC外延材料和自主开发的SiC器件工艺加工技术,实现了SiC微波功率器件在S波段连续波功率输出大于10W、功率增益大于9dB、功率附加效率不低于35%的性能样管,初步显现了SiC器件在S波段连续波大功率、高增益方面的优势。与以往的硅微波功率器件相比,在同样的频率和输出功率下,SiC微波功率器件的体积不到Si器件的1/7,重量不到Si器件的20%,其功率增益较Si器件提高了3dB以上,器件效率也得到了相应的提高。同时由于SiC微波功率器件的输入、输出阻抗要明显高于Si微波功率器件,在一定程度上可以简化或不用内匹配网络来得到比较高的微波功率增益,这就为器件的小体积、低重量奠定了基础,也为器件的大功率输出创造了条件。  相似文献   
8.
在n型4H-SiC单晶导电衬底上制备了具有MPS(merged p-i-n Schottky diode)结构和JTE(junction termination extension)结构的肖特基势垒二极管。通过高温离子注入及相应的退火工艺,进行了区域性p型掺杂,形成了高真空电子束蒸发Ni/Pt/Au复合金属制备肖特基接触,衬底溅射Ti W/Au并合金做欧姆接触,采用场板和JTE技术减小高压电场集边效应。该器件具有良好的正向整流特性和较高的反向击穿电压。反向击穿电压可以达到1300V,开启电压约为0.7V,理想因子为1.15,肖特基势垒高度为0.93eV,正向电压3.0V时,电流密度可以达到700A/cm2。  相似文献   
9.
SiC MESFET工艺在片检测技术   总被引:1,自引:0,他引:1  
介绍了SiC MESFET芯片加工工艺中的主要在片检测技术,包括芯片表面情况判定、干法刻蚀的监浏、等平面工艺的辅助测试、欧姆接触比接触电阻值的测试以及各种中间测试技术.芯片表面情况判定主要通过显微镜观察表面形貌、原子力显微镜测表面均匀性以及扫描电镜观察形貌以及组分分析.干法刻蚀的监测主要通过台阶仪结合椭偏仪实现,即保证了干法刻蚀按预想的深度刻蚀也验证了材料结构的参数.通过TLM图形测试的比接触电阻值可以确保良好的欧姆接触,减小器件的串联电阻,提高器件的电流处理能力,为实现高功率输出奠定基础.通过台阶仪测量和显微镜观察实现的等平面工艺大大提高了器件的性能,微波功率提高30%左右,增益提高1.5 dB以上,功率附加效率提高接近10%.  相似文献   
10.
在n型4H-SiC衬底上的n型同质外延层的Si面制备了纵向肖特基势垒二极管(SBD),研究了场板、场限环及其复合结构等不同终端截止结构对于反向阻断电压与反向泄漏电流的影响。场板(FP)结构有利于提高反向阻断电压,减小反向泄漏电流。当场板长度从5μm变化到25μm,反向阻断电压随着场板长度的增加而增加。SiO2厚度对于反向阻断电压有重要的影响,当厚度为0.5μm,即大约为外延层厚度的1/20时,可以得到较大的反向阻断电压。当场限环的离子注入区域宽度从10μm变化到70μm,反向阻断电压也随之增加。FLR和FP复合结构对于改善反向阻断电压以及反向泄漏电流都有作用,同时反向阻断电压对于场板长度不再敏感。采用复合结构,在10μA反向泄漏电流下最高阻断电压达到1 300V。讨论了离子注入剂量对于反向阻断电压的影响,注入离子剂量和反向电压的关系表明SBD结构不同于传统PIN结构的要求。当采用大约为150%理想剂量的注入剂量时才可达到最高的反向阻断电压而不是其他报道的75%理想剂量,此时的注入剂量远高于PIN结构器件所需的注入剂量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号