首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  国内免费   114篇
机械仪表   1篇
无线电   141篇
一般工业技术   2篇
  2023年   1篇
  2020年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   8篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   22篇
  2004年   12篇
  2003年   18篇
  2002年   13篇
  2001年   12篇
  2000年   7篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有144条查询结果,搜索用时 0 毫秒
1.
陈博  王圩 《半导体学报》1999,20(12):1054-1058
研究不同生长温度下的InP/AlGaInAs/InP材料LP-MOCVD生长,用光致发光和X射线双晶衍射等测试手段分析了其材料特性,得到了室温脉冲激射1.3μmAlGaInAs有源区SCH-MQW结构材料,为器件制作研究打下了基础.  相似文献   
2.
设计并制作了一种在Y形波导的两个分支上集成分布反馈(distributed feedback,DFB)激光器的单片集成器件.DFB激光器的布拉格光栅一次曝光形成,具有相同的光栅周期.当注入电流分别单独加载到两段DFB激光器之上时,从Y形波导端输出光波长在1565nm附近,边模抑制比大于30dB.当大于阈值且相差大于20mA的两个电流同时加载到两段DFB激光器上时,从Y形波导端输出的光谱具有双模分布,双模频率的差值可以拍频产生微波频段的信号.通过调节两段DFB的注入电流,微波信号的频率可以在13~42GHz之间快速连续调谐.这种基于Y形波导的两段DFB并联的拍频光源比传统的双段级联DFB器件有较好的光学和电学隔离,可以作为光学拍频源的一种新的实现方法.  相似文献   
3.
用MOCVD技术在偏(1100)GaAs衬底上生长了发光波长在1.3μm的线状空间规则排列InAs量子点.光致发光实验表明,相对于正(100)衬底,偏(100)GaAs衬底上生长的InAs量子点具有更好的材料质量,光谱有更大的强度和更窄的线宽.为了得到发光波长为1.3μm的量子点,对比研究了不同In含量的InGaAs应力缓冲层(SBL)和应力盖层(SCL)的应力缓冲作用.结果表明,增加SCL中In含量能有效延伸量子点发光波长到1. 3μm,但是随着SBL中In的增加,发光波长变化不明显,并且材料质量明显下降.  相似文献   
4.
报道了用于10Gbit/s传输的DFB激光器和EA调制器对接集成器件的设计、制作和器件特性.工作主要集中于两个方面:提高激光器和调制器间的光学耦合;通过减小调制器电容提高调制带宽.集成器件显示出了良好的静态和高频特性:阈值电流典型值为15mA,最小值为8mA;100mA激光器偏置电流下,输出功率大于10mW;对消光比、电学回波损耗和调制带宽进行了测试,3dB带宽的测量值超过10GHz.  相似文献   
5.
制备了1.74μm脊波导结构压应变InGaAs/InGaAsP量子阱分布反馈激光器.采用低压金属有机化合物气相沉积法生长器件材料,应用应变缓冲层防止In的分凝.未镀膜的腔长为300μm的器件阈值电流为11.5mA,100mA时最大输出功率为14mW,边模抑制比为33.5dB.  相似文献   
6.
A 1.65-μm three-section distributed Bragg reflector(DBR) laser for CH4 gas sensors is reported.The DBR laser has a wide tunable range covering the R3 and R4 methane absorption line manifolds.The wavelength tunability properties,temperature stability and laser linewidth are characterized and analyzed.Several advantages were demonstrated compared with traditional DFB lasers in harmonic detection.  相似文献   
7.
Device-quality GaAs thin films have been grown on miscut Ge-on-Si substrates by metal-organic chemical vapor deposition. A method of two-step epitaxy of GaAs is performed to achieve a high-quality top-layer. The initial thin buffer layer at 360 ℃ is critical for the suppression of anti-phase boundaries and threading dislocations. The etch pit density ofGaAs epilayers by KOH etching could reach 2.25 × 10^5 cm^-2 and high-quality GaAs top epilayers are observed by transmission electron microscopy. The band-to-band photoluminescence property of GaAs epilayers on different substrates is also investigated and negative band shifts of several to tens of meVs are found because of tensile strains in the GaAs epilayers. To achieve a smooth surface, a polishing process is performed, followed by a second epitaxy of GaAs. The root-mean-square roughness of the GaAs surface could be less than 1 nm, which is comparable with that of homo-epitaxial GaAs. These low-defect and smooth GaAs epilayers on Si are desirable for GaAs-based devices on silicon substrates.  相似文献   
8.
单脊条形可调谐电吸收调制DFB激光器   总被引:1,自引:1,他引:0  
报道了一种波长可热调谐的电吸收调制分布反馈激光器(Electroabsorptionmodulateddistributedfeedbacklaser,EML)。在激光器条形的侧面淀积一薄膜加热器,EML实现了 2 2nm的连续调谐。在调谐范围内,激光器输出功率的变化小于 3dB。采用端面有效反射率方法和耦合波理论的计算表明:采用相调制方法,可实现调谐范围达3 2nm的EML。如果热调谐与相调谐方法结合,可在较宽范围内实现波长快速调谐的EML  相似文献   
9.
设计并制作了一种在Y形波导的两个分支上集成分布反馈(distributed feedback,DFB)激光器的单片集成器件.DFB激光器的布拉格光栅一次曝光形成,具有相同的光栅周期.当注入电流分别单独加载到两段DFB激光器之上时,从Y形波导端输出光波长在1565nm附近,边模抑制比大于30dB.当大于阈值且相差大于20mA的两个电流同时加载到两段DFB激光器上时,从Y形波导端输出的光谱具有双模分布,双模频率的差值可以拍频产生微波频段的信号.通过调节两段DFB的注入电流,微波信号的频率可以在13~42GHz之间快速连续调谐.这种基于Y形波导的两段DFB并联的拍频光源比传统的双段级联DFB器件有较好的光学和电学隔离,可以作为光学拍频源的一种新的实现方法.  相似文献   
10.
邱伟彬  董杰  王圩  周帆 《半导体学报》2002,23(7):681-684
利用选择外延技术研制了1.5μm DFB激光器和自对准模斑转换器单片集成器件.激光器的上限制层与垂直方向上楔型波导的模斑转换器同时选择性生长 ,这样的方法不仅可以分别优化有源区和模斑转换器的材料,同时可以降低选择性生长对接结构的难度.所研制集成器件的阈值为4.4mA,在49.5mA下的输出功率为10.1mW,边模抑制比为33.2dB,垂直方向和水平方向上的远场发散角分别为9°和15°,1dB偏调容差分别为3.6μm和3.4μm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号