首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   12篇
  国内免费   7篇
电工技术   4篇
化学工业   39篇
金属工艺   11篇
机械仪表   19篇
建筑科学   21篇
能源动力   9篇
轻工业   18篇
水利工程   6篇
石油天然气   1篇
无线电   27篇
一般工业技术   58篇
冶金工业   6篇
自动化技术   24篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   15篇
  2020年   13篇
  2019年   13篇
  2018年   25篇
  2017年   11篇
  2016年   12篇
  2015年   9篇
  2014年   27篇
  2013年   25篇
  2012年   17篇
  2011年   20篇
  2010年   8篇
  2009年   13篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
  1988年   1篇
  1973年   1篇
排序方式: 共有243条查询结果,搜索用时 31 毫秒
1.
Recently, renewable energy resources and their impacts have sparked a heated debate to resolve the Australian energy crisis. There are many projects launched throughout the country to improve network security and reliability. This paper aims to review the current status of different renewable energy resources along with their impacts on society and the environment. Besides, it provides for the first time the statistics of the documents published in the field of renewable energy in Australia. The statistics include information such as the rate of papers published, possible journals for finding relative paper, types of documents published, top authors, and the most prevalent keywords in the field of renewable energy in Australia. It will focus on solar, wind, biomass, geothermal and hydropower technologies and will investigate the social and environmental impacts of these technologies.  相似文献   
2.
Abstract was revised as follows:In response to recent climate change, which is believed to be attributed to the release of greenhouse gas (GHG) emissions, many countries are placing CO2 abatement programs such as carbon tax and cap-and-trade. Projects do have a significant share in GHGs and therefore their environmental performance, like their schedule and cost performance, should be monitored and controlled. Although many large projects would pass an environmental assessment in the project evaluation phase, the issue of environmental performance monitoring during the project execution phase has not been addressed in project management methodologies. The objective of this paper is to develop a model to estimate project GHG emissions, and to measure project GHG performance using the developed metrics, which can be used at any point in time over the life of a project. A comprehensive study is conducted to collect information on GHG emission factors of various project activity data (such as material use, energy and fuel consumption, transportation, etc.), and a user form interface is developed to calculate the total GHG of an activity. Also, a breakdown structure is proposed which supports managing all the project GHG accounts. The monitoring and control model is formulated based on the logic used in earned value management (EVM) methodology. The proposed model is then implemented to a work package of a real construction project. The results present the project initial GHG plan and show that the model is able to calculate project GHG variance by the reporting date and predict project final GHG based on a project GHG performance index. The method presented in this paper is general and can be applied to any type of projects in an organization that aims to reduce its carbon footprint. The same structure can be applied to monitor and control any other environmental impact associated with project execution process.  相似文献   
3.
Wireless Networks - Authenticated key establishment schemes allow the participants to authenticate each other and establish a secure session key among them. These schemes play an important role in...  相似文献   
4.
5.
In this paper, a numerical model is developed for the fully coupled analysis of deforming porous media containing weak discontinuities which interact with the flow of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations involving the coupled solid skeleton deformation and two-phase fluid flow in partially saturated porous media are derived within the framework of the generalized Biot theory. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three-phase formulation. The other variables are incorporated into the model via the experimentally determined functions that specify the relationship between the hydraulic properties of the porous medium, i.e. saturation, permeability and capillary pressure. The spatial discretization by making use of the extended finite element method (XFEM) and the time domain discretization by employing the generalized Newmark scheme yield the final system of fully coupled non-linear equations, which is solved using an iterative solution procedure. Numerical convergence analysis is carried out to study the approximation error and convergence rate of several enrichment strategies for bimaterial multiphase problems exhibiting a weak discontinuity in the displacement field across the material interface. It is confirmed that the problems which arise in the blending elements can have a significant effect on the accuracy and convergence rate of the solution.  相似文献   
6.
Carbon nanotubes (CNTs) are excellent candidates for torsional elements used in nanoelectro-mechanical systems (NEMS). Simulations show that after being twisted to a certain angle, they buckle and lose their mechanical strength. In this paper, classical molecular dynamics simulations are performed on single-walled carbon nanotubes (CNTs) to investigate the effects of torsion speed and temperature on CNT torsional properties. The AIREBO potential is employed to describe the bonded interactions between carbon atoms. The MD simulations clearly show that the buckling of CNTs in torsion is a reversible process, in which by unloading the buckled CNT in opposite direction, it returns to its original configuration. In addition, the numerical results reveal that the torsional shear modulus of CNTs increases by increasing the temperature and decreasing the torsion speed. Furthermore, the buckling torsion angle of CNTs increases by increasing the torsion speed and decreasing the temperature. Finally, it is observed that torsional properties of CNTs are highly affected by speed of twist and temperature of the nanotubes.  相似文献   
7.
In this paper, an enriched finite element technique is presented to simulate the mechanism of interaction between the hydraulic fracturing and frictional natural fault in impermeable media. The technique allows modeling the discontinuities independent of the finite element mesh by introducing additional DOFs. The coupled equilibrium and flow continuity equations are solved using a staggered Newton solution strategy, and an algorithm is proposed on the basis of fixed‐point iteration concept to impose the flow condition at the hydro‐fracture mouth. The cohesive crack model is employed to introduce the nonlinear fracturing process occurring ahead of the hydro‐fracture tip. Frictional contact is modeled along the natural fault using the penalty method within the framework of plasticity theory of friction. Moreover, an experimental investigation is carried out to perform the hydraulic fracturing experimental test in fractured media under plane strain condition. The results of several numerical and experimental simulations are presented to verify the accuracy and robustness of the proposed computational algorithm as well as to investigate the mechanisms of interaction between the hydraulically driven fracture and frictional natural fault. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
Ventricular septal defect (VSD) is one of the most common types of congenital heart defects (CHD). There are vivid multifactorial causes for VSD in which both genetic and environmental risk factors are consequential in the development of CHD. Methionine synthase reductase (MTRR) and methylenetetrahydrofolate reductase (MTHFR) are two of the key regulatory enzymes involved in the metabolic pathway of homocysteine. Genes involved in homocysteine/folate metabolism may play an important role in CHDs. In this study; we determined the association of A66G and C524T polymorphisms of the MTRR gene and C677T polymorphism of the MTHFR gene in Iranian VSD subjects. A total of 123 children with VSDs and 125 healthy children were included in this study. Genomic DNA was extracted from the buccal cells of all the subjects. The restriction fragment length polymorphism polymerase chain reaction (PCR-RFLP) method was carried out to amplify the A66G and C524T polymorphism of MTRR and C677T polymorphism of MTHFR genes digested with Hinf1, Xho1 and Nde1 enzymes, respectively. The genotype frequencies of CC, CT and TT of MTRR gene among the studied cases were 43.1%, 40.7% and 16.3%, respectively, compared to 52.8%, 43.2% and 4.0%, respectively among the controls. For the MTRR A66G gene polymorphism, the genotypes frequencies of AA, AG and GG among the cases were 33.3%, 43.9% and 22.8%, respectively, while the frequencies were 49.6%, 42.4% and 8.0%, respectively, among control subjects. The frequencies for CC and CT genotypes of the MTHFR gene were 51.2% and 48.8%, respectively, in VSD patients compared to 56.8% and 43.2% respectively, in control subjects. Apart from MTHFR C677T polymorphism, significant differences were noticed (p < 0.05) in C524T and A66G polymorphisms of the MTRR gene between cases and control subjects.  相似文献   
9.
A novel nanocomposite consisting bisphenol A diglycidyl ether/1,4-Bis(3-aminopropoxy) butane (1,4-APB)/multiwall carbon nanotube (MWCNT) was synthesized and characterized. Kinetics of the reaction was described by applying differential scanning calorimetry (DSC) data to isoconversional methods of Flynn-Wall-Ozawa (FWO), advanced isoconversional method of Vyazovkin, and non-linear integral isoconversional algorithm (NLN). It was found that at the presence of MWCNT the thermal decomposition temperature increased by rising the curing temperature and time. Data from dynamic mechanical thermal analysis (DMTA) showed that the glass transition temperature of the cured nanocomposite is 7 °C higher than that value found for the system without carbon nanotube. Scanning electron microscopy (SEM) was used to observe the fracture surface morphology and results indicated evidence of the interfacial interaction improvement and adhesion strength due to good dispersion of MWCNT.  相似文献   
10.
Reliability assessment of composite power systems is a critical and important part of power investigations especially in the market-driven environments. Therefore, the reliability indices as criteria for the comparison of the reliability of the power systems should be evaluated precisely and carefully. Because of the nonlinear behavior of the systems as the effect of different parameters like weather conditions, load pattern changes and some others, reliability indices always contain much uncertainty. In this paper a neuro-fuzzy based method is proposed to reduce the degree of the uncertainty in the reliability indices and therefore to evaluate the reliability of the composite power systems precisely. Fuzzy logic theory makes it possible to make use of the human experts knowledge in the reliability evaluations. Also by the use of RBFNN and its powerful characteristic to learn any nonlinear mapping between two states it would be possible to evaluate the reliability indices for every short time interval needed so that reliability evaluation in real time would be achievable and feasible.In this paper the RBFNN is trained by the training patterns that are achieved by the use of fuzzy logic theory, then the results are examined on a standard Reliability Test System (RTS-96).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号