首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42334篇
  免费   15000篇
  国内免费   51篇
电工技术   786篇
综合类   49篇
化学工业   18356篇
金属工艺   573篇
机械仪表   1174篇
建筑科学   1805篇
矿业工程   29篇
能源动力   1131篇
轻工业   7389篇
水利工程   315篇
石油天然气   72篇
无线电   7497篇
一般工业技术   12479篇
冶金工业   732篇
原子能技术   97篇
自动化技术   4901篇
  2024年   4篇
  2023年   79篇
  2022年   72篇
  2021年   420篇
  2020年   1577篇
  2019年   3283篇
  2018年   3255篇
  2017年   3570篇
  2016年   4038篇
  2015年   4090篇
  2014年   4095篇
  2013年   5308篇
  2012年   3120篇
  2011年   2870篇
  2010年   2999篇
  2009年   2843篇
  2008年   2355篇
  2007年   2089篇
  2006年   1851篇
  2005年   1549篇
  2004年   1488篇
  2003年   1482篇
  2002年   1423篇
  2001年   1222篇
  2000年   1146篇
  1999年   540篇
  1998年   113篇
  1997年   104篇
  1996年   57篇
  1995年   47篇
  1994年   42篇
  1993年   39篇
  1992年   29篇
  1991年   28篇
  1990年   22篇
  1989年   21篇
  1988年   19篇
  1987年   17篇
  1986年   17篇
  1985年   13篇
  1984年   9篇
  1983年   11篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1977年   4篇
  1976年   8篇
  1975年   3篇
  1973年   2篇
  1890年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
3.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
4.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
5.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
6.
7.
Polymer‐grafted inorganic particles (PGIPs) are attractive building blocks for numerous chemical and material applications. Surface‐initiated controlled radical polymerization (SI‐CRP) is the most feasible method to fabricate PGIPs. However, a conventional in‐batch reaction still suffers from several disadvantages, including time‐consuming purification processes, low grafting efficiency, and possible gelation problems. Herein, a facile method is demonstrated to synthesize block copolymer–grafted inorganic particles, that is, poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA)‐b‐poly(N‐isopropylacrylamide) (PNIPAM)–grafted silica micro‐particles using continuous flow chemistry in an environmentally friendly aqueous media. Immobilizing the chain transfer agent and subsequent SI‐CRP can be accomplished sequentially in a continuous flow system, avoiding multi‐step purification processes in between. The chain length (MW) of the grafted polymers is tunable by adjusting the flow time or monomer concentration, and the narrower molar mass dispersity (Р< 1.4) of the grafted polymers reveals the uniform polymer chains on the particles. Moreover, compared with the in‐batch reaction at the same condition, the continuous system also suppresses possible gelation problems.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号