首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2874篇
  免费   180篇
  国内免费   2篇
电工技术   21篇
综合类   3篇
化学工业   495篇
金属工艺   37篇
机械仪表   74篇
建筑科学   129篇
矿业工程   4篇
能源动力   80篇
轻工业   209篇
水利工程   33篇
石油天然气   6篇
无线电   254篇
一般工业技术   642篇
冶金工业   460篇
原子能技术   11篇
自动化技术   598篇
  2024年   2篇
  2023年   24篇
  2022年   17篇
  2021年   66篇
  2020年   58篇
  2019年   64篇
  2018年   91篇
  2017年   87篇
  2016年   82篇
  2015年   81篇
  2014年   127篇
  2013年   207篇
  2012年   208篇
  2011年   281篇
  2010年   197篇
  2009年   216篇
  2008年   182篇
  2007年   197篇
  2006年   154篇
  2005年   141篇
  2004年   97篇
  2003年   86篇
  2002年   76篇
  2001年   44篇
  2000年   36篇
  1999年   41篇
  1998年   35篇
  1997年   30篇
  1996年   15篇
  1995年   13篇
  1994年   11篇
  1993年   14篇
  1992年   5篇
  1991年   5篇
  1990年   10篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1976年   4篇
  1973年   2篇
  1972年   2篇
  1960年   2篇
排序方式: 共有3056条查询结果,搜索用时 31 毫秒
1.
2.
Cocaine is one of the most widely abused illicit drugs worldwide and has long been recognised as an agent of cardiac dysfunction in numerous cases of drug overdose. Cocaine has previously been shown to up-regulate cytoskeletal rearrangements and morphological changes in numerous tissues; however, previous literature observes such changes primarily in clinical case reports and addiction studies. An investigation into the fundamental cytoskeletal parameters of migration, adhesion and proliferation were studied to determine the cytoskeletal and cytotoxic basis of cocaine in cardiac cells. Treatment of cardiac myocytes with cocaine increased cell migration and adhesion (p < 0.05), with no effect on cell proliferation, except with higher doses eliciting (1–10 μg/mL) its diminution and increase in cell death. Cocaine downregulated phosphorylation of cofilin, decreased expression of adhesion modulators (integrin-β3) and increased expression of ezirin within three hours of 1 μg/mL treatments. These functional responses were associated with changes in cellular morphology, including alterations in membrane stability and a stellate-like phenotype with less compaction between cells. Higher dose treatments of cocaine (5–10 μg/mL) were associated with significant cardiomyocyte cell death (p < 0.05) and loss of cellular architecture. These results highlight the importance of cocaine in mediating cardiomyocyte function and cytotoxicity associated with the possible loss of intercellular contacts required to maintain normal cell viability, with implications for cardiotoxicity relating to hypertrophy and fibrogenesis.  相似文献   
3.

Methods for postirradiation characterization of bulk (cm3) irradiated materials or even spent nuclear fuels are sparse due to their extremely radioactive nature. While several methods exist to characterize smaller volumes (<?1 mm3) of such samples, selecting these volumes from larger samples is challenging. X-ray-based methods are prohibitive due to the strong γ-radiation from the sample flooding the detectors. Neutron-based methods available in the proximity of irradiation reactors allow for thermal neutron radiography or computed tomography using a small reactor source, but one cannot assess isotope distributions or microstructural features such as phases, texture, or strain from diffraction measurements due to flux limitations. We present herein a pathway to provide pulsed neutron characterization of bulk irradiated samples using time-of-flight neutron diffraction for microstructural characterization and energy-resolved neutron imaging for assessment of isotopic densities and distributions. Ultimately, laser-driven pulsed neutron sources may allow deployment of these techniques pool-side at irradiation reactors.

  相似文献   
4.
Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient''s disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [18F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model–data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning.  相似文献   
5.
The vast chemical and structural tunability of metal–organic frameworks (MOFs) are beginning to be harnessed as functional supports for catalytic nanoparticles spanning a range of applications. However, a lack of straightforward methods for producing nanoparticle-encapsulated MOFs as efficient heterogeneous catalysts limits their usage. Herein, a mixed-metal MOF, NiMg-MOF-74, is utilized as a template to disperse small Ni nanoclusters throughout the parent MOF. By exploiting the difference in Ni O and Mg O coordination bond strength, Ni2+ is selectively reduced to form highly dispersed Ni nanoclusters constrained by the parent MOF pore diameter, while Mg2+ remains coordinated in the framework. By varying the ratio of Ni to Mg in the parent MOF, accessible surface area and crystallinity can be tuned upon thermal treatment, influencing CO2 adsorption capacity and hydrogenation selectivity. The resulting Ni nanoclusters prove to be an active catalyst for CO2 methanation and are examined using extended X-ray absorption fine structure and X-ray photoelectron spectroscopy. By preserving a segment of the Mg2+-containing MOF framework, the composite system retains a portion of its CO2 adsorption capacity while continuing to deliver catalytic activity. The approach is thus critical for designing materials that can bridge the gap between carbon capture and CO2 utilization.  相似文献   
6.
Poor strength, infection, leakage, long procedure times, and inflammation limit the efficacy of common tissue sealing devices in surgeries and trauma. Light-activated sealing is attractive for tissue sealing and repair, and can be facilitated by the generation of local heat following absorption of nonionizing laser energy by chromophores. Here, the inherent ability of biomaterials is exploited to absorb nonionizing, mid-infrared (midIR) light in order to engender rapid photothermal sealing and repair of soft tissue wounds. In this approach, the biomaterial simultaneously acts as a photothermal convertor as well as a biosealant, which dispenses the need for exogeneous light-absorbing nanoparticles or dyes. Biomechanical recovery, mathematical modeling, histopathology analyses, tissue strain mapping using digital imaging correlation, and visualization of the biosealant-tissue interface using hyperspectral imaging indicate superior performance of midIR sealing in live mice compared to conventional sutures and glue. The midIR-biosealant approach demonstrates rapid sealing of soft tissues, improves cosmesis, lowers potential for scarring, obviates safety concerns because of the nonionizing light used, and allows adoption of a wide diversity of biomaterials. Taken together, the studies demonstrate a novel advance both in biomaterials for surgical sealing along with the use of nonionizing midIR light, with high potential for clinical translation.  相似文献   
7.
JOM - Alpha-radiation damage in metals is a concern for long-term radioactive storage and systems that produce nuclear energy. Accurate prediction of irradiated material properties and failure...  相似文献   
8.
Offshore wind turbines have the potential to capture the high‐quality wind resource. However, the significant wind and wave excitations may result in excessive vibrations and decreased reliability. To reduce vibrations, passive structural control devices, such as the tuned mass damper (TMD), have been used. To further enhance the vibration suppression capability, inerter‐based absorbers (IBAs) have been studied using the structure‐based approach, that is, proposing specific stiffness‐damping‐inertance elements layouts for investigation. Such an approach has a critical limitation of being only able to cover specific IBA layouts, leaving numerous beneficial configurations not identified. This paper adopts the newly introduced structure‐immittance approach, which is able to cover all network layout possibilities with a predetermined number of elements. Linear monopile and spar‐buoy turbine models are first established for optimisation. Results show that the performance improvements can be up to 6.5% and 7.3% with four and six elements, respectively, compared with the TMD. Moreover, a complete set of beneficial IBA layouts with explicit element types and numbers have been obtained, which is essential for next‐step real‐life applications. In order to verify the effectiveness of the identified absorbers with OpenFAST, an approach has been established to integrate any IBA transfer functions. It has been shown that the performance benefits preserve under both the fatigue limit state (FLS) and the ultimate limit state (ULS). Furthermore, results show that the mass component of the optimum IBAs can be reduced by up to 25.1% (7,486 kg) to achieve the same performance as the TMD.  相似文献   
9.
Cerebral microbleeds (CMBs) are small hemosiderin deposits indicative of prior cerebral microscopic hemorrhage and previously thought to be clinically silent. Recent population‐based cross‐sectional studies and prospective longitudinal cohort studies have revealed association between CMB and cognitive dysfunction. In the general population, CMBs are associated with age, hypertension, and cerebral amyloid angiopathy. In the chronic kidney disease (CKD) population, diminished estimated glomerular filtration rate has been found to be an independent risk factor for CMB, raising the possibility that a uremic milieu may predispose to microbleeds. In the end‐stage renal disease (ESRD) population on hemodialysis, the incidence of microbleeds is significantly higher compared with a control group without history of CKD or stroke. We present an ESRD patient on chronic hemodialysis with a history of gradual cognitive decline and progressive CMBs. Through this case and literature review, we illustrate the need to develop detection and prediction models to treat this frequent development in ESRD patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号