首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85139篇
  免费   1041篇
  国内免费   406篇
电工技术   782篇
综合类   2316篇
化学工业   11611篇
金属工艺   4782篇
机械仪表   3067篇
建筑科学   2191篇
矿业工程   563篇
能源动力   1132篇
轻工业   3711篇
水利工程   1282篇
石油天然气   345篇
无线电   9387篇
一般工业技术   16508篇
冶金工业   3142篇
原子能技术   276篇
自动化技术   25491篇
  2023年   16篇
  2021年   44篇
  2020年   21篇
  2019年   28篇
  2018年   14472篇
  2017年   13405篇
  2016年   9988篇
  2015年   621篇
  2014年   261篇
  2013年   277篇
  2012年   3199篇
  2011年   9481篇
  2010年   8328篇
  2009年   5613篇
  2008年   6819篇
  2007年   7825篇
  2006年   152篇
  2005年   1251篇
  2004年   1155篇
  2003年   1209篇
  2002年   561篇
  2001年   113篇
  2000年   200篇
  1999年   88篇
  1998年   232篇
  1997年   134篇
  1996年   130篇
  1995年   46篇
  1994年   57篇
  1993年   51篇
  1992年   26篇
  1991年   34篇
  1989年   21篇
  1988年   19篇
  1976年   15篇
  1969年   27篇
  1968年   44篇
  1967年   39篇
  1966年   42篇
  1965年   46篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 162 毫秒
1.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
2.
Immune Thrombocytopenia (ITP) is an autoimmune disease characterized by autoantibodies-mediated platelet destruction, a prevalence of M1 pro-inflammatory macrophage phenotype and an elevated T helper 1 and T helper 2 lymphocytes (Th1/Th2) ratio, resulting in impairment of inflammatory profile and immune response. Macrophages are immune cells, present as pro-inflammatory classically activated macrophages (M1) or as anti-inflammatory alternatively activated macrophages (M2). They have a key role in ITP, acting both as effector cells, phagocytizing platelets, and, as antigen presenting cells, stimulating auto-antibodies against platelets production. Eltrombopag (ELT) is a thrombopoietin receptor agonist licensed for chronic ITP to stimulate platelet production. Moreover, it improves T and B regulatory cells functions, suppresses T-cells activity, and inhibits monocytes activation. We analyzed the effect of ELT on macrophage phenotype polarization, proposing a new possible mechanism of action. We suggest it as a mediator of macrophage phenotype switch from the M1 pro-inflammatory type to the M2 anti-inflammatory one in paediatric patients with ITP, in order to reduce inflammatory state and restore the immune system function. Our results provide new insights into the therapy and the management of ITP, suggesting ELT also as immune-modulating drug.  相似文献   
3.
Inherited cardiomyopathies are frequent causes of sudden cardiac death (SCD), especially in young patients. Despite at the autopsy they usually have distinctive microscopic and/or macroscopic diagnostic features, their phenotypes may be mild or ambiguous, possibly leading to misdiagnoses or missed diagnoses. In this review, the main differential diagnoses of hypertrophic cardiomyopathy (e.g., athlete’s heart, idiopathic left ventricular hypertrophy), arrhythmogenic cardiomyopathy (e.g., adipositas cordis, myocarditis) and dilated cardiomyopathy (e.g., acquired forms of dilated cardiomyopathy, left ventricular noncompaction) are discussed. Moreover, the diagnostic issues in SCD victims affected by phenotype-negative hypertrophic cardiomyopathy and the relationship between myocardial bridging and hypertrophic cardiomyopathy are analyzed. Finally, the applications/limits of virtopsy and post-mortem genetic testing in this field are discussed, with particular attention to the issues related to the assessment of the significance of the genetic variants.  相似文献   
4.
We prepared a series of free NH and N-substituted dibenzonthiazines with potential anti-tumor activity from N-aryl-benzenesulfonamides. A biological test of synthesized compounds (59 samples) was performed in vitro measuring their antiproliferative activity against a panel of six human solid tumor cell lines and its tubulin inhibitory activity. We identified 6-(phenylsulfonyl)-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide and 6-tosyl-6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide as the best compounds with promising values of activity (overall range of 2–5.4 μM). Herein, we report the dibenzothiazine core as a novel building block with antiproliferative activity, targeting tubulin dynamics.  相似文献   
5.
In this study, we aimed at fabricating decellularized bovine myocardial extracellular matrix-based films (dMEbF) for cardiac tissue engineering (CTE). The decellularization process was carried out utilizing four consecutive stages including hypotonic treatment, detergent treatment, enzymatic digestion and decontamination, respectively. In order to fabricate the dMEbF, dBM were digested with pepsin and gelation process was conducted. dMEbF were then crosslinked with N-hydroxysuccinimide/1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (NHS/EDC) to increase their durability. Nuclear contents of native BM and decellularized BM (dBM) tissues were determined with DNA content analysis and agarose-gel electrophoresis. Cell viability on dMEbF for 3rd, 7th, and 14th days was assessed by MTT assay. Cell attachment on dMEbF was also studied by scanning electron microscopy. Trans-differentiation capacity of human adipose-derived mesenchymal stem cells (hAMSCs) into cardiomyocyte-like cells on dMEbF were also evaluated by histochemical and immunohistochemical analyses. DNA contents for native and dBM were, respectively, found as 886.11?±?164.85 and 47.66?±?0.09?ng/mg dry weight, indicating a successful decellularization process. The results of glycosaminoglycan and hydroxyproline assay, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), performed in order to characterize the extracellular matrix (ECM) composition of native and dBM tissue, showed that the BM matrix was not damaged during the proposed method. Lastly, regarding the histological study, dMEbF not only mimics native ECM, but also induces the stem cells into cardiomyocyte-like cells phenotype which brings it the potential of use in CTE.  相似文献   
6.
7.
In this study, three different configurations of a solid oxide fuel cell and gas microturbine hybrid system are evaluated for application in auxiliary power units. The first configuration is a common hybrid system in auxiliary power units, utilizing a fuel cell stack in the structure of the gas turbine cycle. The other configurations use two series and parallel fuel cell stacks in the structure of the gas turbine cycle. The main purpose of this research is thermodynamic analysis, evaluation of the performance of the proposed hybrid systems in similar conditions, and selection of an appropriate system in terms of efficiency, power generation, and entropy generation rate. In this study, the utilized fuel cells were subjected to electrochemical, thermodynamic, and thermal analyses and their working temperatures were calculated under various working conditions. Results indicate that the hybrid system with two series stacks had maximum power generation and efficiency compared with the other two cases. Moreover, the simple hybrid system and the system with two parallel stacks had relatively equal pure power generation and efficiency. According to the investigations, hybrid system with two series fuel cell stacks, which had 3424 and 1712 cells, respectively, can achieve the electrical efficiency of over 48%. A hybrid system with two parallel fuel cell stacks, in which each stack had 2568 cells, had the electrical efficiency of 46.3%. Findings suggested that maximum electrical efficiency occurred between the pressure ratios of 5–6 in the proposed hybrid systems.  相似文献   
8.
Ballast contamination by fine materials such as sand and clay in railway track at arid regions is an important issue that causes track instability problems and settlement due to reduction of shear strength of ballast. In this paper, the results of direct shear box test conducted on clean ballast, sand-fouled ballast and clay-fouled ballast for different ballast gradations are reported and discussed. For this purpose, three different fouling amounts according to fouling index are added to clean ballast. Test results show that by increasing the fouling percentage, the ballast shear strength always decreases both for sand and clay fouled ballast. However, the amount of shear strength reduction is low at high normal stresses. Clay contamination has more adverse effect on the shear strength of ballast compared with sand contamination. Also, the results of tests for evaluation of gradation effect on shear strength of fouled ballast which are conducted on various gradations according to American Railway Engineering and Maintenance-of-Way Association, show that the maximum particle size as well as uniformity coefficient affect the shear strength of ballast. Also, an empirical equation is presented to observe the effect of ballast gradation on reduction of shear strength with regard to amount of fouling material and normal stress.  相似文献   
9.
The rapid population growth of cities in developing countries (DC) make difficult to distribute the available potable water (PW) with equality. The distribution problem arises from an insufficient amount of PW and because cities water distribution systems (WDS) are not efficient. The novelty of this paper is a self-tuning controller (STC) proposed to manage, along the day, the pressure of water through the nodes of a WDS. It means, pressure management (PM) is proposed to control water levels (WLs) in householders tanks (HTs). The objective is to satisfy with equality the PW demand at different zones of a city forcing the flow of water by managing the pressure. The proposed STC performance is tested on the digital simulator developed to characterize the hydraulic operation of a WDS. The dynamic behaviour of the WDS is determined by the variation of the WL in the tanks of the WDS when water is supplied or extracted from them. The WDS of Mexico City is analysed and the proposed STC is applied to a simplified WDS. The results allow to conclude that the proposed STC could become a supporting tool for the decision making of WDS operators.  相似文献   
10.
The development of visualizing tools to monitor unsaturated moisture flow in cement-based materials is of great importance, as most degradation processes in cement-based materials are connected to and take place in the presence moisture. This paper investigates the ability of electrical capacitance tomography (ECT) to image two-dimensional (2D) unsaturated moisture flow in cement-based materials. In ECT, the electrical permittivity distribution within an object is reconstructed based on measured capacitances between electrodes attached on the object’s surface. In a series of experiments, mortar specimens with and without discrete cracks were imaged with ECT during a 2D moisture ingress. The results show that ECT is able to monitor the evolution of the moisture flow, and to approximate the shape and position of the moisture front. These findings indicate that ECT is a viable method for monitoring and visualizing 2D unsaturated moisture flow in cement-based materials in the presence and absence of discrete cracks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号