首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6481篇
  免费   236篇
  国内免费   7篇
电工技术   63篇
综合类   2篇
化学工业   989篇
金属工艺   140篇
机械仪表   130篇
建筑科学   296篇
矿业工程   21篇
能源动力   147篇
轻工业   446篇
水利工程   71篇
石油天然气   31篇
无线电   533篇
一般工业技术   1134篇
冶金工业   1802篇
原子能技术   34篇
自动化技术   885篇
  2023年   43篇
  2021年   114篇
  2020年   90篇
  2019年   106篇
  2018年   114篇
  2017年   109篇
  2016年   107篇
  2015年   112篇
  2014年   173篇
  2013年   361篇
  2012年   277篇
  2011年   341篇
  2010年   214篇
  2009年   204篇
  2008年   257篇
  2007年   256篇
  2006年   225篇
  2005年   158篇
  2004年   159篇
  2003年   170篇
  2002年   136篇
  2001年   101篇
  2000年   94篇
  1999年   114篇
  1998年   396篇
  1997年   264篇
  1996年   177篇
  1995年   129篇
  1994年   111篇
  1993年   128篇
  1992年   84篇
  1991年   68篇
  1990年   79篇
  1989年   79篇
  1988年   79篇
  1987年   75篇
  1986年   53篇
  1985年   73篇
  1984年   50篇
  1983年   45篇
  1982年   50篇
  1981年   57篇
  1980年   51篇
  1979年   51篇
  1978年   52篇
  1977年   74篇
  1976年   83篇
  1975年   45篇
  1974年   35篇
  1973年   41篇
排序方式: 共有6724条查询结果,搜索用时 31 毫秒
1.
Deep geological repositories for radioactive waste contain metallic materials, either used to construct disposal canisters or as low-/intermediate-level waste (L/ILW). The safety relevance of corrosion is linked to canister lifetime in the former case and gas generation in the latter. More specifically, the Belgian “supercontainer” concept envisages mild steel for the used fuel disposal canister, and in the case of the Swiss L/ILW repository, mild steels are the largest metallic waste component due to the decommissioning of civilian power-generating facilities. For these circumstances, the corrosion environment is dominated by the chemistry of cement, which is used as buffer or backfill material. The corrosion behaviour of mild steel in anoxic environments was studied through the analysis of the hydrogen end-product. Hydrogen analysis was conducted by periodically purging the cell head-space and analysing the gas using a solid-state hydrogen sensor. While this method is limited to providing only uniform corrosion rates averaged over periods of time, ranging from weeks to months, it provides excellent resolution and sensitivity. The test cell environments were matched against the anticipated Belgian high-level waste and Swiss L/ILW repository environments, and also against experiments that have been conducted by other researchers for comparative purposes. Samples were exposed to synthetic cement pore waters, representing fresh and degraded cement. In young cement waters, the formation of initial corrosion products resulted in steel wire corrosion rates of the order of µm/year, which, at 80°C rapidly declined to ∼10 nm/year. In contrast, SA516 grade 70 steel plate corroded much more slowly under similar conditions. In aged cement waters, initial corrosion rates were higher but declined faster towards a longer-term rate of ∼10 nm/year. 316L stainless steel, embedded in cementitious material, corroded at a rate of <1 nm/year at 50°C.  相似文献   
2.
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells. Here, we focus on the interplay and competition of BER and NER pathways in excising oxidatively generated guanine lesions site-specifically positioned in plasmid DNA templates constructed by a gapped-vector technology. These experiments demonstrate a significant enhancement of the NER yields in covalently closed circular DNA plasmids (relative to the same, but linearized form of the same plasmid) harboring certain oxidatively generated guanine lesions. The interplay between the BER and NER pathways that remove oxidatively generated guanine lesions are reviewed and discussed in terms of competitive binding of the BER proteins and the DNA damage-sensing NER factor XPC-RAD23B to these lesions.  相似文献   
3.
Seasonal influenza epidemics have been responsible for causing increased economic expenditures and many deaths worldwide. Evidence exists to support the claim that the virus can be spread through the air, but the relative significance of airborne transmission has not been well defined. Particle image velocimetry (PIV) and hot-wire anemometry (HWA) measurements were conducted at 1 m away from the mouth of human subjects to develop a model for cough flow behavior at greater distances from the mouth than were studied previously. Biological aerosol sampling was conducted to assess the risk of exposure to airborne viruses. Throughout the investigation, 77 experiments were conducted from 58 different subjects. From these subjects, 21 presented with influenza-like illness. Of these, 12 subjects had laboratory-confirmed respiratory infections. A model was developed for the cough centerline velocity magnitude time history. The experimental results were also used to validate computational fluid dynamics (CFD) models. The peak velocity observed at the cough jet center, averaged across all trials, was 1.2 m/s, and an average jet spread angle of θ = 24° was measured, similar to that of a steady free jet. No differences were observed in the velocity or turbulence characteristics between coughs from sick, convalescent, or healthy participants.  相似文献   
4.
Chemical ligation is an important tool for the generation of synthetic DNA structures, which are used for a wide range of applications. Surprisingly, reported chemical ligation yields can range from 30 to 95 % for the same chemical activating agent and comparable DNA structures. We report a systematic study of DNA ligation by using a well-defined bimolecular test system and a water-soluble carbodiimide (EDC) as a phosphate-activating agent. Our results emphasize the interplay between template-substrate complex stability and the rates of the chemical steps of ligation, with 3′ phosphate substrates providing yields near 100 % after 24 hours for particularly favorable reaction conditions. Ligation rates are also shown to be sensitive to the identity of the base pairs flanking a nick site, with as much as threefold variation. Finally, the observation that DNA substrates are modified by EDC at rates that can be comparable with ligation rates emphasizes the importance of considering side reactions when designing protocols to maximize ligation yields.  相似文献   
5.
6.
We used the molecular modeling program Rosetta to identify clusters of amino acid substitutions in antibody fragments (scFvs and scAbs) that improve global protein stability and resistance to thermal deactivation. Using this methodology, we increased the melting temperature (Tm) and resistance to heat treatment of an antibody fragment that binds to the Clostridium botulinum hemagglutinin protein (anti-HA33). Two designed antibody fragment variants with two amino acid replacement clusters, designed to stabilize local regions, were shown to have both higher Tm compared to the parental scFv and importantly to retain full antigen binding activity after 2 hr of incubation at 70°C. The crystal structure of one thermostabilized scFv variants was solved at 1.6 Å and shown to be in close agreement with the RosettaAntibody model prediction.  相似文献   
7.
8.
Glutamate racemases (GR) are members of the family of bacterial enzymes known as cofactor-independent racemases and epimerases and catalyze the stereoinversion of glutamate. D-amino acids are universally important for the proper construction of viable bacterial cell walls, and thus have been repeatedly validated as attractive targets for novel antimicrobial drug design. Significant aspects of the mechanism of this challenging stereoinversion remain unknown. The current study employs a combination of MD and QM/MM computational approaches to show that the GR from H. pylori must proceed via a pre-activation step, which is dependent on the enzyme's flexibility. This mechanism is starkly different from previously proposed mechanisms. These findings have immediate pharmaceutical relevance, as the H. pylori GR enzyme is a very attractive allosteric drug target. The results presented in this study offer a distinctly novel understanding of how AstraZeneca's lead series of inhibitors cripple the H. pylori GR's native motions, via prevention of this critical chemical pre-activation step. Our experimental studies, using SPR, fluorescence and NMR WaterLOGSY, show that H. pylori GR is not inhibited by the uncompetitive mechanism originally put forward by Lundqvist et al.. The current study supports a deep connection between native enzyme motions and chemical reactivity, which has strong relevance to the field of allosteric drug discovery.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号