首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   3篇
化学工业   2篇
建筑科学   1篇
能源动力   1篇
轻工业   11篇
水利工程   1篇
无线电   2篇
一般工业技术   5篇
冶金工业   5篇
自动化技术   1篇
  2022年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
  1997年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Listeria monocytogenes is a pathogenic microorganism infects man mostly through food. A total of 1615 samples of foods of animal origin and water were collected from retail meat shops of North-Eastern India and processed. Sixty-three (3.9%) samples were positive for L. monocytogenes. Animal origin foods showing the highest prevalence was chevon (9.8%) followed by beef (8.9%), chicken (8.5%), pork (2.8%) and milk (1.8%). The prevalence rate in water from retail meat shops was 10%. Recovered L. monocytogenes were distributed into 3 serogroups, of which 74.6% fit in to 1/2a, 3a serogroup, 17.5% to 1/2b, 3b and 7.9 % to 4b, 4d, 4e serogroups. Thirty-five isolates out of 63 possessed all the tested four virulence genes. RAPD- and ERIC -PCR based analyses jointly revealed a discriminative genetic profile for the L. monocytogenes. On the whole, the occurrence of L. monocytogenes in foods of animal origin of North Eastern India displays public health hazard.  相似文献   
2.
3.
Interaction between the free surface and the bed material in flow over rock chutes under macroroughness conditions leads to a high air entrainment into the flow. The note reports on an experimental study about air diffusion features in the flow over a long rock chute. Air concentration profiles and water depths over a uniform bed material were measured. An empirical equation for the average air concentration in macroroughness condition for steep slopes is proposed. A new Darcy-Weisbach equivalent friction factor for long chutes as a function of the slope and the relative equivalent depth has also been found.  相似文献   
4.
5.
6.
Pseudomonas aeruginosa is a notorious pathogen that causes biofilm aided infections in patients with cystic fibrosis and burn wounds, resulting in significant mortality in immunocompromised individuals. This study reports a novel one‐step biosynthesis of gold nanoparticles using phytocompound, hordenine (HD), as a reducing and capping agent. The synthesis of the anisotropic hordenine‐fabricated gold nanoparticles (HD‐AuNPs) with an average particle size of 136.87 nm was achieved within 12 h of incubation at room temperature. Both HD and HD‐AuNPs exhibited significant antibiofilm activity against P. aeruginosa PAO1, although greater biofilm inhibition was observed for the nanoparticles as compared to hordenine alone. In the microtitre plate assay and tube method, the nanoparticles significantly inhibited the biofilm formation by 73.69 and 78.41%, respectively. The exopolysaccharide production by the test pathogen was arrested by 68.46% on treatment with the nanoparticles. Further, the effect of HD and HD‐AuNPs on the biofilm architecture of P. aeruginosa was revealed by light and confocal laser‐scanning microscopy micrographs. The overall results of this study suggested the synergistic antibiofilm effect of AuNPs and HD for the treatment of chronic bacterial infections caused by biofilms forming pathogens.Inspec keywords: molecular biophysics, biochemistry, gold, nanoparticles, nanofabrication, microorganisms, organic compounds, particle size, nanobiotechnologyOther keywords: green synthesis, anisotropic gold nanoparticles, hordenine, antibiofilm efficacy, Pseudomonas aeruginosa, pathogen, cystic fibrosis, burn wounds, one‐step biosynthesis, phytocompound, reducing agent, capping agent, particle size, microtitre plate assay, tube method, confocal laser‐scanning microscopy micrographs, Au  相似文献   
7.
The biosynthesis of silver nanoparticles (AgNPs) has been proved to be a cost effective and environmental friendly approach toward chemical and physical methods. In the present study, biosynthesis of AgNPs was carried out using aqueous extract of Zea mays (Zm) husk. The initial colour change from golden yellow to orange was observed between 410 and 450 nm which confirmed the synthesis of AgNPs. Also, dynamic light scattering‐particle size analysis confirmed the average size to be 113 nm and zeta potential value of −28 kV. The morphology of synthesised Zm AgNPs displayed flower‐shaped structure, X‐ray diffraction pattern revealed the strongest peaks at 2θ = 38.6° and 64° which proved that the nanoparticle has the face centred crystalline structure. The Fourier transform infrared spectroscopy results showed strong absorption bands at 1394.53, 2980.02 and 2980.02 cm−1 due to the presence of alkynes, carboxylic acids, alcoholic and phenolic groups. The maximum zone of inhibition was observed against Salmonella typhi (22 mm) and Candida albicans (18 mm). The synthesised nanoparticles exhibited more free radical scavenging activity than the aqueous plant extract. This is the first report on the synthesis of AgNP from Zm husk, delivers the efficient and stable Zm AgNPs through simple feasible approach toward green biotechnology.Inspec keywords: silver, nanoparticles, nanofabrication, light scattering, particle size, X‐ray diffraction, crystal structure, Fourier transform infrared spectra, absorption coefficients, free radicalsOther keywords: green synthesis, silver nanoparticles, biosynthesis, environmental friendly approach, aqueous extract, Zea mays husk, colour change, golden yellow, dynamic light scattering‐particle size analysis, average size, zeta potential value, flower‐shaped structure, X‐ray diffraction pattern, face centred crystalline structure, Fourier transform infrared spectroscopy, absorption bands, alkynes, carboxylic acids, alcoholic groups, phenolic groups, Salmonella typhi, Candida albicans, free radical scavenging activity, aqueous plant extraction, green biotechnology, size 113 nm, wavelength 410 nm to 450 nm  相似文献   
8.
Green synthesis of silver nanoparticles (AgNPs) using plant extracts has been achieved by eco‐friendly reducing and capping agents. The present study was conducted to evaluate the larvicidal efficacies of AgNPs synthesized using aqueous leaf extracts of Excoecaria agallocha against dengue vector, Aedes aegypti. The 3rd and 4th instar larvae of A. aegypti were exposed to various concentrations of aqueous extracts of E. agallocha, synthesized AgNPs and also crude solvent extracts (methanol and chloroform) for 24 h. The formation of AgNPs using aqueous leaf extracts was observed after 30 min with a characteristic colour change. The results recorded from UV‐Vis spectrum, XRD, FTIR, EDX, SEM and HR‐TEM were used to characterize and confirm the biosynthesis of AgNPs. The highest larvicidal efficacy of synthesized AgNPs was observed against 3rd instar larvae at LC50 4.65 mg/L, LC90 14.17 mg/L and 4th instar larvae with a concentration of LC50 6.10 mg/L, LC90 15.64 mg/L. A significant larvicidal activity was also observed with crude methanolic extracts against 3rd instar larvae at a concentration LC50 41.74 mg/L, LC90 123.61 mg/L and 4th instar larvae at a concentration of LC50 52.06 mg/L, LC90 166.40 mg/L as compared to the chloroform extract.Inspec keywords: silver, nanoparticles, nanofabrication, microorganisms, cellular biophysics, organic compounds, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, X‐ray chemical analysis, scanning electron microscopy, transmission electron microscopyOther keywords: larvicidal activity, green synthesised silver nanoparticles, Excoecaria agallocha L. leaf extract, Aedes aegypti, plant extracts, capping agents, larvicidal efficacies, aqueous leaf extracts, excoecaria agallocha, dengue vector, Aedes aegypti, aegypti, aqueous extraction, E. agallocha, crude solvent extracts, methanol, chloroform, characteristic colour change, ultraviolet‐visible spectrum, X‐ray diffraction, Fourier‐transform infrared spectroscopy, EDX, scanning electron microscopy, high‐resolution transmission electron microscopy, AgNP biosynthesis, larvicidal efficacy, third instar larvae, instar larvae, crude methanolic extracts, chloroform extraction, time 24 h  相似文献   
9.
Water Resources Management - The proper design, development, and appropriate tuning of the Hybrid Neural Network architecture, mainly for its parsimoniousity and optimal training can help...  相似文献   
10.
The antilisterial activity of monocaprylin (MC) and its combination with acetic acid (AA) on frankfurters was investigated. Each frankfurter was surface inoculated with a three-strain mixture of Listeria monocytogenes to obtain an inoculation level of 4.0 log CFU per frankfurter, and then dipped for 35 s in sterile deionized water (45 or 50 degrees C) containing 1% ethanol (control), 50 mM MC plus 1% ethanol, 1% AA plus 1% ethanol, or 50 mM MC plus 1% AA plus 1% ethanol. Samples were vacuum packaged, stored at 4 degrees C for 77 days, and analyzed for L. monocytogenes. Sensory odor and color of frankfurters were evaluated using a 9-point hedonic scale. Color was also objectively measured using the Minolta Chroma Meter. From day 0 to day 77, population counts of L. monocytogenes on frankfurters dipped in antimicrobial solutions at 50 degrees C were consistently lower than the control counts. Similar results were observed for samples treated at 45 degrees C. However, L. monocytogenes grew readily on control samples at both temperatures. Dipping of frankfurters in antimicrobial solutions (45 or 50 degrees C) significantly reduced (P < 0.05) the populations of L. monocytogenes. After 70 days of storage, L. monocytogenes was completely killed in samples dipped in MC+AA solution at 50 degrees C. The antimicrobial treatments did not affect the odor or color of the samples (P > 0.05). Overall, results indicated that dipping of frankfurters with MC reduced L. monocytogenes, and inclusion of AA further enhanced MC antilisterial activity, without any negative effect on odor or color.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号