首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   5篇
化学工业   18篇
金属工艺   1篇
机械仪表   1篇
能源动力   1篇
轻工业   2篇
无线电   6篇
一般工业技术   11篇
冶金工业   2篇
自动化技术   5篇
  2023年   1篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   9篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2000年   1篇
  1993年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
In this study, the effect of Co addition on microstructural and mechanical properties of WC-B4C–SiC composites sintered by spark plasma sintering (SPS) method was investigated. For this purpose, three batches of WC-B4C–SiC with different contents of Co (10 vol%, 15 vol%, and 20 Vol %) were sintered at 1400 °C. The results of X-ray diffraction (XRD) analysis of the samples indicated the formation of W2B5, W3CoB3 as well as the remained C phases and unreacted SiC phase. It was observed that by increasing the Co content, the amount of W2B5 phase reduces and W3CoB3 and C contents increase. Therefore, W2B5 peaks were not detected in the sample containing 20vol% Co. Relative density values above 97% were obtained for all the composites. However, a decrease was observed in relative density by increasing the Co content in the composites. The highest flexural strength (510 ± 42 MPa), fracture toughness (10.34 ± 0.82 MPa m1/2), and hardness (20.63 ± 0.75 GPa) were also obtained for the sample containing 10vol% Co compared to the other samples. In addition, Transgranular fracture of SiC as well as pulling out of W3CoB3 and W2B5 particles were observed in the fracture surface micrographs of the samples. The presence of micro-cracks in the SiC grains, fracture of W3CoB3 grains, and crack deflection was reported as dominant toughening mechanisms.  相似文献   
2.
An environmentally friendly, low‐cost, and large‐scale method is developed for fabrication of Cl‐doped ZnO nanowire arrays (NWAs) on 3D graphene foam (Cl‐ZnO NWAs/GF), and investigates its applications as a highly efficient field emitter and photocatalyst. The introduction of Cl‐dopant in ZnO increases free electrons in the conduction band of ZnO and also leads to the rough surface of ZnO NWAs, which greatly improves the field emission properties of the Cl‐ZnO NWAs/GF. The Cl‐ZnO NWAs/GF demonstrates a low turn‐on field (≈1.6 V μm−1), a high field enhancement factor (≈12844), and excellent field emission stability. Also, the Cl‐ZnO NWAs/GF shows high photocatalytic efficiency under UV irradiation, enabling photodegradation of organic dyes such as RhB within ≈75 min, with excellent recyclability. The excellent photocatalytic performance of the Cl‐ZnO NWAs/GF originates from the highly efficient charge separation efficiency at the heterointerface of Cl‐ZnO and GF, as well as improved electron transport efficiency due to the doping of Cl. These results open up new possibilities of using Cl‐ZnO and graphene‐based hybrid nanostructures for various functional devices.  相似文献   
3.
This paper presents an investigation on thermal and mechanical properties of new metal-particle filled Acrylonitrile Butadiene Styrene (ABS) composites for applications in Fused Deposition Modeling rapid prototyping process. Test samples of Iron/ABS and Copper/ABS composites involving metal content up to 40% by volume have been made by controlled centrifugal mixing, thermally compounded through a single-screw extruder and compression moulding. Dynamic Mechanical Analysis (DMA) techniques were used in order to characterize viscoelastic properties of these newly developed composites materials for use in Fused Deposition Modeling process. It has been shown that significant improvements of ABS thermal and mechanical properties due to incorporation of metallic fillers can potentially promote processing of high performance and functional prototypes on the existing FDM platform for a wide range of applications. Sample prototypes from the new composite materials have been successfully made and tested.  相似文献   
4.
An important failure mode of offshore pipelines is ductile fracture of the pipe wall triggered by a hypothetical welding defect. In this study, pipelines having an external part-through semi-circumferential crack of various sizes, subject to combined internal pressure and inelastic bending are considered. This is done to assess the response of pipelines during both their installation and operational conditions. Detailed 3D nonlinear finite element (FE) models of pipelines are developed. A row of elements ahead of the initial crack front are modeled using a voided plasticity material model, which enables simulation of crack growth and the subsequent fracture failure mode (denoted by the critical curvature, κcrit). After discussing the typical response characteristics of such pipelines, the FE model is used to parametrically investigate the influence of varying pipe and crack dimensions, and also the internal pressure levels, on κcrit. In the second part of this paper, the crack tip constraint ahead of a growing crack in such pipes is evaluated and systematically compared to the crack tip constraint of both the traditionally used deeply cracked Single Edge Notch Bend (SENB) specimens and the constraint-matched Single Edge Notch Tensile (SENT) specimens. This is achieved by comparing the crack resistance curves (R-curves) along with stress triaxiality and equivalent plastic strain fields evaluated ahead of a growing crack of the three systems. The results present grounds for justification of usage of SENT specimens in fracture assessment of such pipes as an alternative to the traditional overly conservative SENB specimens.  相似文献   
5.
As a result of recent increase in exploitation of hydrocarbon resources in harsher environments and also installation techniques which utilize the materials plastic deformation capacity, accurate assessment of fracture response of pipelines subject to large plastic strains (e.g., typical of reeled pipes) has attracted particular interest nowadays. In this paper, an approach, based on the evaluation of the J-integral, is developed for assessing the integrity of such pipelines, manifested in a model of a pipeline with a circumferential part-through crack subjected to plastic bending. The proposed approach is an extension of the reference strain method developed earlier by other researchers, and takes advantage of the displacement controlled loading nature in such pipes (thus being suitable for Strain Based Design methodologies), and the resulting high strain levels, which often cause fracture response of the material in the plastic regime. The developed formulation relates the fracture response of the pipe (in terms of the non-dimensionalized J-integral) as a linear function of the axial strain in the pipe at its uncracked state. A series of 300 3D nonlinear finite element models using the ABAQUS software were analyzed in preparation of the equation that could assess the fracture response of such pipes with great accuracy. The resulting equation, calibrated by the finite element results, can predict the fracture response of pipes with a maximum error of 2% for a practical uncracked material strain range of 1.5% ? εunc ? 4%.  相似文献   
6.
In this study, NiTi–x wt.% B4C (x = 0, 2, and 4) composites were consolidated with spark plasma sintering method, and the effects of boron carbide reinforcement addition on the microstructure and wear behavior of samples were investigated. Identification of the constituent phases of samples by the X-ray diffraction method plus Rietveld analysis revealed that the stability of the martensite phase increased in the composite samples because of mismatch stresses between the NiTi matrix phase and the reinforcing particles, which increases the density of the dislocations and facilitates the diffusion process that subsequently leads to the formation of stable intermetallics. The results of hardness test indicated that the hardness value increased from 3.67 GPa for pure NiTi to 10.99 GPa for NiTi–4 wt.% B4C. Results of wear test revealed that boron carbide reinforced composite specimens had higher wear resistance, whereas wear rate of NiTi sample was 3.6 × 10−3 mm3/N m, and it reached to .21 × 10−3 mm3/N m for NiTi–4 wt.% B4C. Investigation of microstructure by scanning electron microscopy images and EDS analysis revealed that the wear mechanism in NiTi samples was abrasive and the addition of B4C to NiTi changed the wear mechanisms from abrasive to a combination of oxidation, adhesive, and delamination mechanisms.  相似文献   
7.
Piperine is the natural bioactive component of black pepper (Piper nigrum L.) with several astounding therapeutic properties. In this study, sequential microwave-ultrasound-assisted extraction approach was used for isolation of piperine from black pepper. The effect of various factors such as extraction solvent, particle size of pepper, solvent to solid ratio, microwave power and time and ultrasound temperature and time on the extraction yield of piperine was considered. The maximum extraction yield was 46.6 mg piperine/g pepper which was obtained using ethanol as solvent at the particle size of 0.15 mm, solvent to solid ratio of 20:1, microwave power of 100 W for 1 min, and ultrasound temperature of 50 ° C for 30 min. This extraction yield was higher than those obtained by Soxhlet (39.1 mg/g), microwave-assisted (38.8 mg/g) and ultrasound-assisted (37.0 mg/g) extractions. The purity of the extracted piperine was 81.4% as determined by HPLC analysis. The FTIR and UV-vis analyses confirmed that the structure of piperine remained intact after extraction and purification which is very important for medicinal applications.  相似文献   
8.
In the present work, particle arrangement and their packing in the sediment layer of zirconia suspension were studied. To evaluate the particle settling, aqueous suspensions of zirconia nanoparticles were prepared in different dispersion states. In one state, Dolapix CE64 was used as a dispersant to provide electrosteric mechanism. In another state, pH of the suspension was adjusted at 4 to provide electrostatic mechanism. The other state was the combination of dispersant and pH adjustment which resulted in the most stable suspension. First of all, the stability of all dispersion states was evaluated by zeta potential, sediment volume (SV) and height, viscosity, and packing density (PD). Then, the sediment layers of all suspensions were characterized. Incorporation of electrostatic mechanism was resulted in a main decrease in viscosity with high surface charges, while electrosteric mechanism caused lower sedimentation of particles. Fall velocities of particles/agglomerates were estimated, and the influences of dispersion states on the particles fall velocities were characterized. The microstructural observation revealed homogeneous packing of particles in the sediment layer of the stable suspension demonstrating the proper dispersion of particles. Dolapix CE64 and pH adjustment resulted in a uniform arrangement of particles without agglomeration and spherical and regular granules with a uniform shape.  相似文献   
9.
In this paper we present our system design and methodology for making absolute quantum efficiency (QE) measurements through the vacuum ultraviolet (VUV) and verify the system with delta-doped silicon CCDs. Delta-doped detectors provide an excellent platform to validate measurements through the VUV due to their enhanced UV response. The requirements for measuring QE through the VUV are more strenuous than measurements in the near UV and necessitate, among other things, the use of a vacuum monochromator, good dewar chamber vacuum to prevent on-chip condensation, and more stringent handling requirements.  相似文献   
10.
We report on investigation of the spin dynamics in InAs and InSb films grown on GaAs at a temperature range from 77 K to 290 K. For both materials, the large lattice mismatch with the GaAs substrate results in the formation of an interface accumulation layer with a large defect concentration, which strongly affects the spin relaxation in these areas. Moreover, the native surface defect in the InAs films resulted in an additional charge accumulation layer with high conductivity, but very short spin lifetime. In contrast, in InSb layers, the surface states introduce a depletion region. We have correlated the spin relaxation with a multi-layer analysis of the transport properties, and find that in a 1 μm thick InAs film, approximately 70% of the total current flows through the interface and surface accumulation layers, which have sub-picosecond lifetimes, whereas in InSb films of the same thickness, the semiconducting layer carries more than 90% of the total current, and the spin lifetime in the accumulation layer is only slightly less than that of the central semiconducting layer. We suggest that InSb could be a more attractive candidate for spintronic applications than InAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号