首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  一般工业技术   5篇
  2014年   2篇
  2013年   2篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
两种半监督多类水下目标识别算法的比较   总被引:1,自引:0,他引:1  
2.
袁帅  杨宏晖  申昇 《声学技术》2014,(4):359-362
特征选择是水声目标识别领域的重要环节之一。提出基于互信息的顺序向前特征选择算法,通过计算特征之间的互信息和特征与类别间的互信息对所有特征的分类能力进行排序。提取了实测4类水声目标进行特征选择和分类实验,结果表明:该算法能够选择有效特征子集,得到较高的正确识别率,并且运行速度快,稳定性强。  相似文献
3.
提出了一种新的用于水声目标分类的加权免疫克隆样本选择算法(weight Immune Clonal Instance Selection,wI-CISA)。算法利用Adaboost算法给予每个样本一权值,每代中根据样本权值计算抗体亲合度和克隆数,且根据克隆复制、抗体更新(海明距离交叉和加权简化最近邻变异)和克隆选择操作指导种群进化。提取了实测3类水声目标的时域波形结构特征、小波分析特征和听觉谱特征,进行样本选择和分类仿真实验,结果表明:wICISA可以选出有效样本子集,使样本数目减少82%左右,并且支持向量机分类器的正确分类率能提高约2%;wICISA具有较好的收敛性、稳定性,所得优化样本子集具有较好的泛化能力且能明显减少分类的时间。  相似文献
4.
针对训练样本集中含有噪声样本、冗余样本以及无关样本,导致分类系统分类性能下降、不稳定的水声目标识别问题,提出了一种新的自适应遗传样本选择算法(Adaptive Genetic Instance Selection Algorithm, AGISA)。算法先随机生成初始种群,接着利用设计的遗传算子(跨代选择、自适应交叉和简化最近邻变异)指导种群进化,每代中对分类贡献大且选择样本数目少的个体适应度值高。提取了实测3类水声目标的多域特征,进行样本选择和分类识别仿真实验,结果表明:AGISA可以选出有效样本子集,在样本维数下降约73%的情况下,支持向量机分类器的正确分类率能提高约2.5%;并且AGISA具有较好的收敛性、稳定性,所得优化样本子集具有较好泛化能力且能明显减少分类的时间。  相似文献
5.
提出了两种基于支持向量机集成和特征选择联合算法。联合算法的核心思想是在构建基础分类器的同时选择有效特征。通过对实测舰船数据和公共数据的识别实验,证明了两种算法都可以用于舰船目标识别。算法一更适用于冗余特征较多的情况。算法二在对舰船目标识别时,选择的特征数目降低为原来特征数目的30%,正确分类率比单个支持向量机高近10%。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号