首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
金属工艺   1篇
能源动力   1篇
一般工业技术   9篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
锂金属具有最低的氧化还原电位(-3.04V vs标准氢电极)和极高的比容量(3860mAh·g^-1),是理想的锂二次电池负极材料.然而电化学循环过程中,由于锂的不均匀成核生长,其表面产生锂枝晶,锂枝晶持续生长会刺穿隔膜,造成电池短路甚至引发火灾.因此需要对锂金属负极进行保护,抑制负面问题,发挥高性能.人造固态电解质界面技术是一种有效的锂金属负极保护策略,本质是预先在锂金属表面涂覆上保护层,保护层具有较高的离子传导性和电化学稳定性、较好的阻隔性和机械强度,可得到高效率、长寿命和无枝晶的锂金属负极.本文将近年来人造固态电解质界面在锂金属负极保护中的研究进展进行综述,对其制备方法、结构特点、锂金属负极循环性能、全电池电化学性能等方面作了详细介绍,分析当前存在问题并指出锂金属负极研究不仅需要加深机理研究还得与实际应用相结合.  相似文献   
2.
作为新型储能设备,水系锌离子电容器具有高功率密度、大能量密度、长循环寿命和高安全性等优异性能,在民用电子设备和军用电气化武器装备领域具有极高的应用前景,有望成为代替锂离子电池的新一代储能方案。本文系统梳理了活性炭正极材料、碳纳米管正极材料、石墨烯正极材料和生物质碳正极材料等碳基正极材料的储锌能力,总结了MXene正极材料在锌离子电容器领域的研究进展,归纳了过渡金属氧化物正极材料的锌离子储存性能,指出开发高容量、耐高压、耐低温正极材料的必要性与紧迫性。  相似文献   
3.
利用高压均质液相剥离法,以鳞片石墨为原料,水为介质,制备高浓度石墨烯水分散液。采用紫外可见光谱研究表明活性剂浓度、高压均质压力和循环次数对石墨烯水分散液浓度C_G的影响。通过拉曼光谱、扫描电镜、透射电镜、激光粒度仪分析水分散液中石墨烯的结构和形貌。结果表明:通过调节各工艺参数,获得了浓度为324.3mg·L-1的石墨烯水分散液,所得浓度是超声液相剥离法的10倍;石墨烯水分散液中石墨烯缺陷少、厚度薄、片径大,具有良好的品质;将所得石墨烯分散液制备石墨烯自支撑膜,其电导率可达3.2×10~4S·m-1。  相似文献   
4.
通过球磨工艺,以硅烷偶联剂KH560对FSC(FeSi_7Cr_3)磁粉进行表面改性,采用扫描电镜(SEM)、热重(TG)分析,研究了表面改性前后FSC磁粉的微观形貌及热分析性能。用矢量网络分析仪测量吸波材料的电磁参量,发现球磨后磁粉颗粒形貌由球形变为扁平片状。TG结果表明,表面处理后试样在900℃氧化4h后仍然具有较好的抗氧化性。电磁参量结果表明,高温氧化后试样的介电参数有所降低。高温氧化结果表明,利用硅烷偶联剂KH560对FSC磁粉进行表面改性,能够提高吸波材料的耐高温性能。表面改性后的FSC磁粉在高温处理后仍然保持良好的吸波性能。在氧化温度为700~900℃时,反射损耗峰由4GHz向高频偏移到6GHz附近,反射损耗性能依旧保持在15dB左右,可见表面改性吸波材料表现出较为良好的抗氧化吸波特性。  相似文献   
5.
分别采用醋酸锰和乙醇还原高锰酸钾,制备2种超薄δ-MnO_2纳米片电极材料(δ-MnO_2-A与δ-MnO_2-B)。通过XRD、XPS、SEM/TEM、比表面积分析等手段研究材料的晶体结构、化学成分、微观形貌和孔径分布特征。电化学性能测试表明:2种材料具有相似的比电容和倍率性能。但是相比于δ-MnO_2-A,电极材料δ-MnO_2-B具有更高的钾含量和锰空位含量,片层状结构更加清晰、稳定,因而充放电循环稳定性更好。在0.5mol/L Na_2SO_4电解液中,1mV·s-1扫描速率下δ-MnO_2电极材料的比电容可达227F·g-1。100mV·s-1扫描速率、5000次循环后,电容保持率为87.6%。  相似文献   
6.
采用研磨、超声分散与搅拌干燥的工艺方法制备磷酸铁锂/石墨烯复合材料。利用TEM,SEM,XRD和Raman对材料组织结构进行表征,并组装成扣式电池进行电化学性能测试。SEM图像表明,在该工艺所制备的磷酸铁锂/石墨烯复合材料中,石墨烯贴附在磷酸铁锂颗粒表面,并且均匀地分散在复合材料中形成良好的导电网络。电化学测试结果显示,添加2%(质量分数)石墨烯后,磷酸铁锂的倍率性能和循环性能都得到明显提高。具体表现为:倍率性能方面,在5C充放电条件下,放电比容量提高到94.2mAh·g~(-1),是添加前的2.53倍;循环性能方面,100次循环(1C充放电)后容量衰减由添加前的43.5%下降到添加后的9.6%。这种简便的工艺能够实现石墨烯在电极材料中的均匀分散,充分发挥石墨烯优异的导电性,进而提升磷酸铁锂正极材料电化学性能。  相似文献   
7.
本工作采用喷雾干燥法制备了小片径石墨烯包覆的Li1.22Mn0.52Ni0.26O2富锂锰基材料(G-LNMO),系统研究了包覆前后材料的晶体结构、微观形貌及电化学性质.扫描电镜(SEM)及透射电镜(TEM)结果表明,该方法实现了石墨烯对富锂锰基材料(LNMO)的均匀包覆.充放电测试表明,石墨烯包覆后将LNMO材料在0.1 C和1 C倍率下的放电容量分别从199.8 mA·h/g和87.1 mA·h/g提升至220.2 mA·h/g和117.6 mA·h/g.在0.5 C倍率下经过100次循环后,G-LNMO材料的容量保持率为88%,相比于LNMO材料提升了17%.电池充放电曲线及电化学阻抗分析显示,石墨烯包覆能够显著提升电极动力学,降低电池在充放电过程中的极化,减缓电极/电解液界面副反应的发生,进而提升材料的循环稳定性和倍率性能.  相似文献   
8.
石墨烯优异的力学和物理性能使其成为理想的储能材料。因结构精确可控,易实现规模化制备,3D打印石墨烯材料有望在储能领域得到广泛应用。本文全面综述了3D打印石墨烯制备技术及其在储能领域的应用研究进展。石墨烯墨水的黏度和可打印性是实现石墨烯3D打印的制约因素。实现工艺简单、浓度可控、无黏结剂石墨烯墨水的规模化打印将成为3D打印石墨烯制备技术未来的研究热点。石墨烯超级电容器、锂硫电池、锂离子电池等储能元件一体化打印成型是3D打印石墨烯在储能领域应用的发展方向。  相似文献   
9.
采用熔盐法、层间催化剥离法、退火工艺及熔化扩散法制备出Mn2O3/Fe2O3/少层石墨烯/硫复合材料作为锂硫电池正极材料。高导电少层石墨烯构成三维导电网络,为电极反应过程中电子传输提供通道,有利于提升锂硫电池的比容量。金属氧化物颗粒均匀分布在少层石墨烯表面,对多硫化物具有强烈化学吸附作用,能够有效抑制多硫化物的溶解和迁移效应,有利于增强锂硫电池循环稳定性。结果表明,Mn2O3/Fe2O3/FLG30/S电极显示出高比容量和优异的循环性能。0.1 C倍率下,其初始容量高达886.3 mAh·g^-1,100圈循环后容量保持率高达88.1%。  相似文献   
10.
锂离子电池被认为是富有前途的能源储存器件,寻找高性能锂电池新材料已成为全世界的研究热点。MXenes材料是一种新型过渡金属碳化物、氮化物或碳氮化物二维纳米材料的统称,具有比表面积大、导电性能好、储锂容量较高、循环和倍率性能优异等特点,是一种具有光明应用前景的锂离子电池材料。本文对MXenes材料在锂离子电池应用研究中的重大突破进行了综述,介绍了其制备方法、结构性能、储锂机理,归纳了其在锂离子电池中的具体应用及机制,分析了当前存在问题。综述指出MXenes材料研究,应利用其自身亲水性和导电性优势,在复合电极材料、自支撑电极材料等方面重点部署,为高性能锂子电池关键技术带来突破。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号