首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
化学工业   2篇
一般工业技术   3篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
本文采用麦秸粉为增强体,分别与高密度聚乙烯(HDPE)、聚丙烯(PP)热塑性塑料基体采用挤出方式混合制备木塑复合材料,研究麦秸粉与HDPE、PP的配比对复合材料性能的影响。利用高速混合机在一定条件下对麦秸粉、热塑性塑料和其他助剂进行混合,利用双螺杆挤出机熔融造粒,单螺杆挤出机挤出成型,对制备的麦秸粉/塑料复合材料进行物理力学性能测试。结果表明:加入少量麦秸粉使木塑复合材料力学性能降低,随着麦秸粉含量的增加,复合材料的力学性能呈提高的趋势;当麦秸粉含量超过一定比例时,木塑复合材料力学性能降低,且冲击性能降低明显;本次试验HDPE基木塑复合材料力学强度略高于PP基木塑复合材料。  相似文献   
2.
相对于传统制造方法如挤出成型、模压成型等,3D打印技术不仅能够快速成型结构复杂且精细的产品,而且还可以根据不同功能、性能需求选择不同材料进行快速制造.凭借这一优势,3D打印越来越受到人们的重视,越来越多的3D打印产品被应用到人们的生活、学习和工作中.在众多3D打印材料中,聚合物材料(如热固性和热塑性聚合物等)的占比大、应用广,大到房屋内饰、小到微/纳米电子设备都可以通过3D打印聚合物材料来实现.然而,相比于传统方法制造的聚合物材料,3D打印聚合物材料强度低、打印层之间界面结合差,所以目前3D打印聚合物材料主要用于模型和非结构材料.为提高3D打印聚合物材料的强度,纳米材料(如纤维素纳米晶)常被用作增强体与聚合物材料混合打印,以此制备高强、多功能的3D打印纳米复合材料.纤维素纳米晶来源广泛、价格低廉、可再生、强度高,是一种十分理想的天然纳米增强材料.因此,近年来纤维素纳米晶在3D打印聚合物纳米复合材料中的应用受到广泛关注.除研究纳米材料对3D打印聚合物材料性能的影响外,研究者们还从纳米材料改性和新型纳米材料的研发等方面不断进行尝试,在提高3D打印聚合物纳米复合材料强度的同时赋予其更多的功能性,并取得了丰硕的成果.此外,借助光固化3D打印和聚合物熔融沉积成型两项基本原理相近、成型机理不同的3D打印技术,研究者们从打印纳米复合材料的结构、性能及功能出发,分别研究不同打印技术实现材料"结构-性能-功能"的可能性和可行性,为3D打印聚合物纳米复合材料的拓展应用提供了可靠依据.本文在简述3D打印技术的基础上,重点阐述常用于热固性和热塑性聚合物3D打印技术的基本原理和特点;着重分析两项不同3D打印技术在聚合物纳米复合材料领域的应用情况,总结3D打印聚合物纳米复合材料的性能特征和应用范围,以期为3D打印纳米复合材料的广泛应用奠定基础.  相似文献   
3.
采用麦秸粉、聚乳酸(PLA)、偶联剂(KH550)、增塑剂(PEG400)、助剂,制得PLA/麦秸粉复合材料,探究了麦秸粉、KH550、PEG400、助剂的用量对PLA/麦秸粉复合材料力学性能的影响。研究结果表明:麦秸粉用量过多会导致PLA/麦秸粉复合材料的力学性能降低,在麦秸粉用量为10%(wt,质量分数,下同)、PLA用量为90%、KH550用量为6%、PEG400用量为10%,助剂用量为1%条件下,制得的PLA/麦秸粉复合材料的拉伸强度为38.0MPa,断裂拉伸应变为40.0%,弯曲强度为60.0MPa,冲击强度为14.0kJ/m2,具有较好的力学性能。  相似文献   
4.
3D打印PLA/麦秸粉复合材料的力学性能优化   总被引:1,自引:0,他引:1  
将聚乳酸(PLA)作为基体,麦秸粉作为增强体,通过挤出成型工艺制备用于熔融沉积成型3D打印的木塑复合材料。采用正交试验设计的方法,通过对复合材料的力学性能进行测试,探索最佳的制备工艺。结果表明,随着麦秸粉平均粒径的增加,复合材料的弯曲强度与冲击强度出现先上升后下降的趋势,当平均粒径为120μm时,弯曲强度与冲击强度分别达到60.51 MPa,12.84 k J/m~2;麦秸粉的含量在1%时,复合材料的弯曲强度与冲击强度达到最大值,分别为62.87 MPa,12.72 k J/m~2;硅烷偶联剂KH550的加入会提高复合材料的力学性能,对冲击强度的作用效果强于弯曲强度,当KH550的添加量为8%时,冲击强度达到12.90 k J/m~2;马来酸酐接枝聚丙烯相容剂(MAPP)的添加会使复合材料的弯曲强度与冲击强度先上升后下降,当MAPP含量为1%时,复合材料的弯曲强度与冲击强度分别为62.68 MPa,11.91 k J/m~2,达到最大值。  相似文献   
5.
纳米纤维素表面富含活性羟基,具有高度的亲水性和吸水性,这在很大程度上成为影响纳米纤维素在工业上大规模应用的主要因素。对纳米纤维素表面的活性羟基进行化学修饰提高其疏水性,日益成为国内外学者研究的热点。本文在简要阐述超疏水材料基本特征和制备方法的基础上,对比了不同超疏水材料制备方法(模板法、喷涂法、沉积法、刻蚀法)的优劣,重点介绍了国内外学者利用纳米纤维素构建超疏水材料(气凝胶、纸张、涂层、薄膜等)在生物医学、造纸工业、油水分离、食品包装、储能材料等不同领域的研究进展,归纳并分析了目前纳米纤维素构建超疏水材料在改性方式和性能提升等方面仍存在的问题,同时指出了纳米纤维素构建超疏水材料未来将朝着过程无污染化、工艺简化、稳定性优化等方向发展。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号