首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   51篇
  国内免费   2篇
电工技术   5篇
化学工业   228篇
金属工艺   23篇
机械仪表   17篇
建筑科学   40篇
矿业工程   5篇
能源动力   28篇
轻工业   162篇
水利工程   7篇
石油天然气   4篇
无线电   56篇
一般工业技术   160篇
冶金工业   122篇
原子能技术   2篇
自动化技术   104篇
  2024年   2篇
  2023年   16篇
  2022年   23篇
  2021年   60篇
  2020年   22篇
  2019年   37篇
  2018年   43篇
  2017年   40篇
  2016年   36篇
  2015年   22篇
  2014年   34篇
  2013年   71篇
  2012年   52篇
  2011年   55篇
  2010年   43篇
  2009年   43篇
  2008年   33篇
  2007年   37篇
  2006年   46篇
  2005年   23篇
  2004年   14篇
  2003年   21篇
  2002年   18篇
  2001年   9篇
  2000年   9篇
  1999年   8篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   10篇
  1994年   11篇
  1993年   11篇
  1992年   8篇
  1991年   3篇
  1990年   8篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   11篇
  1985年   9篇
  1984年   3篇
  1983年   7篇
  1982年   8篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1971年   2篇
  1958年   1篇
排序方式: 共有963条查询结果,搜索用时 31 毫秒
1.
Wireless Personal Communications - Wireless sensor network is gaining popularity due to its large-scale deployment in Internet of Things. The constraints of resources influence the protocol design...  相似文献   
2.
Piperine is an alkaloid that has extensive pharmacological activity and impacts other active substances bioavailability due to inhibition of CYP450 enzymes, stimulation of amino acid transporters and P-glycoprotein inhibition. Low solubility and the associated low bioavailability of piperine limit its potential. The combination of piperine with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) causes a significant increase in its solubility and, consequently, an increase in permeability through gastrointestinal tract membranes and the blood–brain barrier. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) were used to characterize interactions between piperine and HP-β-CD. The observed physicochemical changes should be combined with the process of piperine and CD system formation. Importantly, with an increase in solubility and permeability of piperine as a result of interaction with CD, it was proven to maintain its biological activity concerning the antioxidant potential (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay), inhibition of enzymes essential for the inflammatory process and for neurodegenerative changes (hyaluronidase, acetylcholinesterase, butyrylcholinesterase).  相似文献   
3.
Nonwoven super‐hydrophobic fiber membranes have potential applications in oil–water separation and membrane distillation, but fouling negatively impacts both applications. Membranes were prepared from blends comprising poly(vinylidene fluoride) (PVDF) and random zwitterionic copolymers of poly(methyl methacrylate) (PMMA) with sulfobetaine methacrylate (SBMA) or with sulfobetaine‐2‐vinylpyridine (SB2VP). PVDF imparts mechanical strength to the membrane, while the copolymers enhance fouling resistance. Blend composition was varied by controlling the PVDF‐to‐copolymer ratio. Nonwoven fiber membranes were obtained by electrospinning solutions of PVDF and the copolymers in a mixed solvent of N,N‐dimethylacetamide and acetone. The PVDF crystal phases and crystallinities of the blends were studied using wide‐angle X‐ray diffraction and differential scanning calorimetry (DSC). PVDF crystallized preferentially into its polar β‐phase, though its degree of crystallinity was reduced with increased addition of the random copolymers. Thermogravimetry (TG) showed that the degradation temperatures varied systematically with blend composition. PVDF blends with either copolymer showed significant increase of fouling resistance. Membranes prepared from blends containing 10% P(MMA‐ran‐SB2VP) had the highest fouling resistance, with a fivefold decrease in protein adsorption on the surface, compared to homopolymer PVDF. They also exhibited higher pure water flux, and better oil removal in oil–water separation experiments. © 2018 Society of Chemical Industry  相似文献   
4.
During manufacturing of a component, cutting, turning, grinding, and milling operations are inevitable and these operations induce surface residual stresses. In this study, it is shown that, depending on the process employed for cutting, residual stresses generated at the cut surfaces can vary widely and they can, in turn, make the cut surfaces of austenitic stainless steel (SS) prone to stress corrosion cracking (SCC). An austenitic SS 304L plate was cut using three different procesess: bandsaw cutting, cutting using the cut-off wheel, and shearing. Surface residual stress measurement using the X-ray diffraction (XRD) technique is carried out close to the cutting edges and on the cross-section. SCC susceptibility studies were carried out as per ASTM G36 in 45% boiling magnesium chloride solution. Optical microscopic examination showed the presence of cracks, and confocal microscopy was used to measure the depth of cracks. The study confirmed that high tensile residual stresses present in the cut surfaces produced by cut-off wheel and shear cutting make the surfaces susceptible to SCC while the surfaces produced by bandsaw cutting are resistant to SCC. Hence, it is shown that there is a definite risk of SCC for product forms of austenitic SS with cut surfaces produced using cutting processes that generate high tensile residual stresses stored for a long period of time in a susceptible environment.  相似文献   
5.
The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed.  相似文献   
6.
Past sequencing campaigns overlooked small proteins as they seemed to be irrelevant due to their small size. However, their occurrence is widespread, and there is growing evidence that these small proteins are in fact functionally very important in organisms found in all kingdoms of life. Within a global proteome analysis for small proteins of the archaeal model organism Haloferax volcanii, the HVO_2922 protein has been identified. It is differentially expressed in response to changes in iron and salt concentrations, thus suggesting that its expression is stress-regulated. The protein is conserved among Haloarchaea and contains an uncharacterized domain of unknown function (DUF1508, UPF0339 family protein). We elucidated the NMR solution structure, which shows that the isolated protein forms a symmetrical dimer. The dimerization is found to be concentration-dependent and essential for protein stability and most likely for its functionality, as mutagenesis at the dimer interface leads to a decrease in stability and protein aggregation.  相似文献   
7.
High-porosity yttria- and ytterbia-stabilized zirconia aerogels offer the potential of extremely low thermal conductivity materials for high-temperature applications. Yttria- and ytterbia-doped zirconia aerogels were synthesized using a sol-gel approach over the dopant range of 0-20 atomic percent. Surface area, pore volume, and morphology of the as-dried aerogels and materials thermally exposed for short periods of time to temperatures up to 1200°C were characterized by nitrogen physisorption, scanning and transmission electron microscopy, and X-ray diffraction. The aerogels as supercritically dried all were X-ray amorphous. At a 5% dopant level, a tetragonal structure with a smaller monoclinic phase developed on thermal exposure. Mixed tetragonal and cubic phases or predominantly cubic materials were observed at higher dopant levels, depending on the dopant level, temperature and exposure time. The formation of crystalline phases was accompanied by loss of surface area and pore volume, although some mesoporous structure was maintained on short-term exposure to 1000°C. Incorporation of the smaller Yb atom into the lattice structure resulted in smaller lattice dimensions on crystallization than was seen with Y doping and favored a more highly equiaxed structure. Aerogels synthesized with 15% Y maintained the smallest particle size without evidence of sintering at 1100°C. Largest shrinkage and loss of pore volume occurred on crystallization from the amorphous phase, with further loss of pores at temperatures above 1000°C attributable to changes in lattice parameters.  相似文献   
8.
A thermal barrier coating (TBC) system survived 500 hours in aggressive, 1300°C burner rig testing. The yttria-stabilized zirconia (7YSZ) TBC was plasma sprayed on an oxidation-resistant Ti2AlC-type MAX phase and tested in a jet fuel burner at 100 m/s, using 5 hours cycles. No coating spallation or surface recession was observed; Al2O3-scale growth produced a slight 2.4 mg/cm2 mass gain. The coating surface exhibited craze-cracked colonies of [111]flourite textured columns, with no visible moisture attack. The 20 μm alumina scale remained intact under the YSZ face, about twice that producing failure for TBC/superalloy systems. TiO2 nodules, initially formed on the uncoated backside, were removed, and Al2O3 was etched through volatile hydroxides formed in water vapor (~10%). Overall, the test indicated exceptional stability of the YSZ/Al2O3/Ti2AlC system under turbine conditions due in large part to close thermal expansion matching.  相似文献   
9.
Doxorubicin is a highly effective chemotherapy agent used to treat many common malignancies. However, its use is limited by cardiotoxicity, and cumulative doses exponentially increase the risk of heart failure. To identify novel heart failure treatment targets, a zebrafish model of doxorubicin-induced cardiomyopathy was previously established for small-molecule screening. Using this model, several small molecules that prevent doxorubicin-induced cardiotoxicity both in zebrafish and in mouse models have previously been identified. In this study, exploration of doxorubicin cardiotoxicity is expanded by screening 2271 small molecules from a proprietary, target-annotated tool compound collection. It is found that 120 small molecules can prevent doxorubicin-induced cardiotoxicity, including 7 highly effective compounds. Of these, all seven exhibited inhibitory activity towards cytochrome P450 family 1 (CYP1). These results are consistent with previous findings, in which visnagin, a CYP1 inhibitor, also prevents doxorubicin-induced cardiotoxicity. Importantly, genetic mutation of cyp1a protected zebrafish against doxorubicin-induced cardiotoxicity phenotypes. Together, these results provide strong evidence that CYP1 is an important contributor to doxorubicin-induced cardiotoxicity and highlight the CYP1 pathway as a candidate therapeutic target for clinical cardioprotection.  相似文献   
10.
Cognition, Technology & Work - The work on the factory floor is gradually changing to resemble knowledge work due to highly automated manufacturing machines. In the increasingly automated work...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号