首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   14篇
电工技术   1篇
化学工业   33篇
金属工艺   5篇
建筑科学   1篇
矿业工程   1篇
能源动力   7篇
轻工业   4篇
无线电   17篇
一般工业技术   46篇
冶金工业   13篇
自动化技术   9篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   10篇
  2012年   19篇
  2011年   11篇
  2010年   11篇
  2009年   3篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
1.
Alumina particle reinforced 6061 aluminum matrix composites (Al2O3p/6061Al) have excellent physical and chemical properties than those of a traditional metal; however, their poor machinability lead to worse surface quality and serious cutting tool wear. In this study, wire electrical discharge machining (WEDM) is adopted in machining Al2O3p/6061Al composite. In the experiments, machining parameters of pulse-on time were changed to explore their effects on machining performance, including the cutting speed, the width of slit and surface roughness. Moreover, the wire electrode is easily broken during the machining Al2O3p/6061Al composite, so this work comprehensively investigates into the locations of the broken wire and the reason of wire breaking.The experimental results indicate that the cutting speed (material removal rate), the surface roughness and the width of the slit of cutting test material significantly depend on volume fraction of reinforcement (Al2O3 particles). Furthermore, bands on the machined surface for cutting 20 vol.% Al2O3p/6061Al composite are easily formed, basically due to some embedded reinforcing Al2O3 particles on the surface of 6061 aluminum matrix, interrupt the machining process. Test results reveal that in machining Al2O3p/6061Al composites a very low wire tension, a high flushing rate and a high wire speed are required to prevent wire breakage; an appropriate servo voltage, a short pulse-on time, and a short pulse-off time, which are normally associated with a high cutting speed, have little effect on the surface roughness.  相似文献   
2.
3.
We demonstrate a facile and effective approach to significantly improve the photoluminescence of bulk MoS2 via laser thinning followed by gold particle decoration. Upon laser thinning of exfoliated bulk MoS2, photoluminescence emerges from the laser-thinned region. After further treatment with an AuCl3 solution, gold particles self-assemble on the laser-thinned region and thick edges, further increasing the fluorescence of bulk MoS2 28 times and the Raman response 3 times. Such fluorescence enhancement can be attributed to both surface plasmon resonance and p-type doping induced by gold particles. The combination of laser thinning and AuCl3 treatment enables the functionalization of bulk MoS2 for optoelectronic applications. It can also provide a viable strategy for mask-free and area-selective p-type doping on single MoS2 flakes.
  相似文献   
4.
Phase-change materials have been extensively used for optical data storage in commercial rewritable compact disks and digital video disks. These materials are also widely considered for next-generation phase-change random access memories to replace current Flash memories. We suggest a different application of phase-change materials in optically triggered microactuators. The suggested device consists of a thin film of a phase-change material deposited on a microfabricated cantilever. A laser-induced phase transformation in the film initiates a cantilever deflection since the transformation is accompanied by a large density change. We analyze quantitative criteria for material selection and optimization of device dimensions for the largest possible actuation angles and deflections. The resulting analytical model is both verified numerically and applied experimentally. Furthermore, we show that these cantilevers offer a convenient way to measure film stresses and film strains associated with laser-induced phase transformations.  相似文献   
5.

Recovered carbon black (rCB), a very economical and abundance source of material, is transformed into dazzling multicolour fluorescence and visual display for the first time by way of a scanning focused laser treatment. This laser-initiated process is both straightforward and versatile, catering to both micro- and macro-scopic patterning with the sample in ambient or helium environment. The observed phenomenon is attributed to both chemical and structural induced colouration of rCB powder. Chemically, carbon infusion of oxidised metal occurs when photothermal reaction takes place in ambient. After laser modification with the sample in helium environment, the powder not only fluoresces due to sulphur impurities, control annealing of these powders results in formation of periodic arrangements of carbon nanoparticles. The periodicity of these arrangement falls within the range of visible wavelength, hence contributing to the visually observable rainbow coloured rCB flakes. The patterned sample is also transferrable using PDMS stamps. This in turn broadens the application of this material in flexible electronic devices/displays. Photocurrent measurements show most significant enhancement under yellow light illumination. Furthermore, in the presence of an applied potential, the fluorescence detected from the sample can easily be switched off. All in all, we present a simple process to add multiple functionalities to a material that is both inexpensive and sustainable.

  相似文献   
6.
7.
In this work, an aqueous acidic thin‐layer‐based strategy for fabricating nanostructures on silicon by using atomic force microscopy (AFM) nanolithography is presented. The approach involves the formation of microscale droplets via dilute hydrofluoride (DHF) etching, the conversion of the droplets to acidic thin layers by AFM‐probe scanning, and subsequent lithographic operations using a biased probe in the aqueous layers. By varying the concentration of the acidic DHF layers, the thin layers can facilitate the creation of both positive and negative patterns, such as oxide dots and Si pores, through anodic oxidation and dissolution. In particular, the anodic oxidation in the acidic media is associated with the field‐enhanced nonequilibrium dissociation of the weak electrolyte. The Si pore structure formation is related to the field‐assisted dissolution of anodic oxides and the Si substrate. The acidic‐layer‐based technique allows switching between different lithographic modes by changing the acidity of the DHF layers, and is complementary to bulk solution‐based and local meniscus‐based approaches in AFM nanolithography. In principle, this method can also be extended to other materials that have similar reactions with DHF.  相似文献   
8.
9.
Photoresponse of isolated Nb(2)O(5) nanowires (NW) padded with platinum (Pt) at both ends were studied with global irradiation by a laser beam and localized irradiation using a focused laser beam. Global laser irradiation on individual NW in ambient and vacuum conditions revealed photocurrent contributions with different time characteristics (rapid and slowly varying components) arising from defect level excitations, thermal heating effect, surface states and NW-Pt contacts. With a spot size of < 1 μm, localized irradiation highlighted the fact that the measured photocurrent in this single NW device (with and without applied bias) depended sensitively on the photoresponse at the NW-Pt contacts. At applied bias, unidirectional photocurrent was observed and higher photocurrent was achieved with localized laser irradiation at reverse-biased NW-Pt contacts. At zero bias, the opposite polarity of photocurrents was detected when the two NW-Pt contacts were subjected to focused laser beam irradiation. A reduced Schottky barrier/width resulting from an increase in charge carriers and thermoelectric effects arising from the localized thermal heating due to focused laser beam irradiation were proposed as the mechanisms dictating the photocurrent at the NW-Pt interface. Comparison of photocurrents generated upon global and localized laser irradiation showed that the main contribution to the photocurrent was largely due to the photoresponse of the NW-Pt contacts.  相似文献   
10.
In this study, the fabrication of Si nanostructures by Au and SiH4 co-deposition technique using hot-wire chemical vapor deposition was demonstrated. A high deposition rate of 2.7 nm/s and a high density of silicon nanostructures with a diameter of about 140 nm were obtained at Ts of 250 °C. An increase in Ts led to a significant reduction in the size of the nanostructures. However, coalescence on the nanostructures was observed at Ts of 400 °C. The Si nanostructures exhibited a highly crystalline structure, which was induced by Au crystallites. The crystallite size and crystallinity of the Si nanostructures amplified with the increase in Ts. The presence of nanostructures enhanced the surface roughness of the samples and clearly reduced the reflection, especially in the visible region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号