首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
化学工业   2篇
金属工艺   2篇
机械仪表   3篇
建筑科学   1篇
一般工业技术   67篇
冶金工业   5篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   6篇
  2007年   6篇
  2006年   1篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   11篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Development of an octocalcium phosphate cement   总被引:2,自引:0,他引:2  
From previous studies it is known that alpha-tertiary calcium phosphate and dicalcium phosphate form a cement upon mixing with water. In this study this cement was optimized in terms of the milling of the constituents, their molar ratio, the amount of hydroxyapatite added and the water/powder ratio. The optimum Ca/P molar ratio of the cement mixture was 1.36±0.03. X-ray diffraction showed the reaction product to be octocalcium phosphate. Addition of precipitated hydroxypatite of over 3% diminished the final strength of the cement significantly. However, admixtures of only 2% of precipitated hydroxyapatite (a) kept the final compressive strength at 30±5 MPa after soaking in Ringers solution at 37°C, (b) diminished the initial setting time from 27.5 to 10 min and the final setting time from 65 to 40 min, (c) diminished the time in which the final strength was reached from 36 to less than 14 h. The tensile strength of this cement is 19±1% of its compressive strength. The optimum water/powder ratio as found in this study was 0.30 g/g.  相似文献   
2.
We present a new technique, based on pulse-echo ultrasound, for monitoring the entire setting process of injectable bone cement. This research has been motivated by the lack of satisfying standards. The main problem with existing standards is the subjectivity, which leads to poor reproducibility. Because of this the results are not comparable between different research groups. A strong advantage with the proposed technique is that if low-intensity ultrasound is used, it provides a non-destructive analysis method. Once the cement paste has been applied to the measurement cell, no manipulation is needed throughout the entire setting process. The problem of the ultrasound affecting the setting of certain cement materials has been investigated, and solutions are discussed. The propagation of ultrasound is temperature-dependent, and therefore a technique for automatic compensation for temperature variations is discussed briefly. The testing was performed on -calcium sulfate hemihydrate (CSH) and mixtures of CSH and -tricalcium phosphate (-TCP). The results show that the acoustic properties of the cement are strongly correlated with the setting time, the density, and the adiabatic bulk modulus. The measured initial and final setting times agree well with the Gillmore needles standard. An important difference compared to the standards, is that the technique presented here allows the user to follow the entire setting process on-line.  相似文献   
3.
The initial setting properties of calcium phosphate cements in the CaHPOv4–-Ca3(PO4)2 (DCP–-TCP) system have been investigated. Interest was focused on the pH, workability, cohesion time and initial and final setting times. The addition of CaCO3 modified the structure of the cement reaction product such that it became more similar to the apatite phase in bone mineral. The addition of 10% w/w of CaCO3 reduced the viscosity of the cement pastes resulting in an increase in initial and final setting times and improved injectability. © 1999 Kluwer Academic Publishers  相似文献   
4.
Distraction osteogenesis is a well-established method of endogenous tissue engineering. It is a biological process of bone neo-formation between segments subjected to tension. The concept of this study was to investigate the distraction osteogenesis with a device capable of creating a permanent and constant force during the whole process as if a very large number of small elongations were applied constantly. The mechanical testing of the device used to produce the constant force and the in vivo analysis of the bone growth after it was implanted in rabbits are presented on this work. The device consists of a NiTi coil spring, superelastic at body temperature, in order to have a stress plateau during the austenitic retransformation during the unloading. The in vivo analysis was made on six female rabbits of 12 months old. A segmental mandibulectomy at the horizontal arm of the mandible and a corticotomy at 5mm distant from the gap were made. Next, following a latency period of five days, the SMA springs were implanted to induce the bone neo-formation. The displacement at the unloading plateau shows that it is necessary to have longer springs or to use several (available commercially) in series in order to fulfil the requirements of a human distraction. The temperature variations induced changes in the spring force. However, when the temperature returns to 37 degrees C the distraction force recovers near the initial level and does so completely when the distraction process continues. For the in vivo study, all six rabbits successfully completed the distraction. The radiographies showed the gap as distraction advanced. A continuity in the newly formed bone with similar transversal and horizontal dimensions than the original bone can be observed on the histologies. In conclusion, the application of a constant force on distraction osteogenesis, using SMA springs, may be a successful alternative to the conventional gradual distraction.  相似文献   
5.
Various tasks were undertaken in our laboratory where environmental scanning electron microscopy (ESEM) has been of particular interest within the biomaterials field. The possibility of observing wet samples, as well as the fact that sample preparation is minimal, has improved shorter time scales and lower costs in microscopy. Minimal preparation has also reduced the possibility of introducing artifacts. Examples like cell cultures used for pit resorption assays, calcium phosphate deposition processes, and dissolution of phosphate glasses used as biomaterials are presented. Finally, a servohydraulic testing machine designed for mechanical testing in situ in ESEM has allowed the study of shape memory alloys for orthodontic applications or the behavior of different adhesives used in odontology.  相似文献   
6.
7.
In the present work, experimental research on grain growth kinetics at different temperatures and times of heat treatment for titanium and Ti---0.2Pd in the and β phases has been carried out. The grain size parameters were obtained by the image analysis technique. The aim of the present study was to quantify the progress of grain growth and the corresponding activation energy for and β titanium, and to determine the effect of Palladium. By means of EDS microanalysis, it has been observed that the effect of a higher concentration of palladium on the grain growth is to decrease the growth exponent for the Ti-0.2Pd alloy. The activation energies differ a lot between the two phases and β for Ti and Ti-0.2Pd. This difference might be due to the different crystal structures.  相似文献   
8.
The effect of grain size on the martensitic transformation in Ni42Ti shape memory alloy has been studied. The kinetics of grain growth has been evaluated and the influence of different grain sizes on the transformation temperatures and the thermodynamic magnitudes has been reported. Image analysis and flow calorimetry techniques have been used. The study shows that grain boundaries favour the martensitic transformation and at the same time obstruct retransformation. Enthalpy and entropy variations are independent of grain size, but elastic energy decreases with the grain size.  相似文献   
9.
Clinical requirements for calcium phosphate bone cements were formulated in terms of the initial setting time, the final setting time, the cohesion time and the ultimate compressive strength. Three cement formulations were tested. The previously developed Biocement H was made of a powder containing alpha-tertiary calcium phosphate and precipitated hydroxyapatite. Biocement B2 powder was made by adding some CaCO3 to Biocement H, whereas Biocement B1 was made by adding some CaCO3 but with simultaneous adjustment of the amount of precipitated hydroxyapatite.The liquid/ powder ratio of the cement paste and the accelerator concentrations (percentage Na2HPO4) in cement liquid were varied. For Biocement H there was no combination of L/P ratio and percentage Na2HPO4 for which all clinical requirements were satisfied. However, there was an area of full compliance for Biocements B1 and B2, of which that for B1 was the largest. Therefore, Biocement B1 may be applied in clinical situations as those in orthopaedics, plastic and reconstructive surgery and oral and maxillofacial surgery, even when early contact with blood is inevitable.  相似文献   
10.
Hydroxyapatite foams are potential synthetic bone grafting materials or scaffolds for bone tissue engineering. A novel method to obtain injectable hydroxyapatite foams consists in foaming the liquid phase of a calcium phosphate cement. In this process, the cement powder is incorporated into a liquid foam, which acts as a template for macroporosity. After setting, the cement hardens maintaining the macroporous structure of the foam. In this study a low molecular weight surfactant, Polysorbate 80, and a protein, gelatine, were compared as foaming agents of a calcium phosphate cement. The foamability of Polysorbate 80 was greater than that of gelatine, resulting in higher macroporosity in the set hydroxyapatite foam and higher macropore interconnectivity. Gelatine produced less interconnected foams, especially at high concentrations, due to a higher liquid foam stability. However it increased the injectability and cohesion of the foamed paste, and enhanced osteoblastic-like cell adhesion, all of them important properties for bone grafting materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号