排序方式: 共有1条查询结果,搜索用时 109 毫秒
1
1.
This paper presents a technique to differentially diagnose two localized gear tooth faults: a spall and a crack in the gear
tooth fillet region. These faults could have very different prognoses, but existing diagnostic techniques only indicate the
presence of local tooth faults without being able to differentiate between a spall and a crack.
The effects of spalls and cracks on the behavior/response of gear assemblies were studied using static and dynamic simulation
models. Changes in the kinematics of a pair of meshing gears due to a gear tooth root crack and a tooth flank spall were compared
using a static analysis model. The difference in the variation of the transmission error caused by the two faults reveals
their characteristics. The effect of a tooth crack depends on the change in stiffness of the tooth, while the effect of a
spall is predominantly determined by the geometry of the fault.
The effect of the faults on the gear dynamics was studied by simulating the transmission error in a lumped parameter dynamic
model. A technique had previously been proposed to detect spalls, using the cepstrum to detect a negative echo in the signal
(from entry into and exit from the spall). In the authors’ simulations, echoes were detected with both types of fault, but
their different characteristics should allow differential diagnosis. These concepts are presented prior to experimental validation
in hopes that the diagnostic techniques will be useful in the failure analysis community prior to the validation by ongoing
experimental testing of the concepts and the evaluation of how metallurgical defects may influence fault development and detection. 相似文献
1