首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1336篇
  免费   69篇
  国内免费   14篇
电工技术   24篇
综合类   2篇
化学工业   314篇
金属工艺   21篇
机械仪表   28篇
建筑科学   34篇
能源动力   91篇
轻工业   90篇
水利工程   8篇
石油天然气   15篇
无线电   170篇
一般工业技术   288篇
冶金工业   111篇
原子能技术   6篇
自动化技术   217篇
  2023年   30篇
  2022年   57篇
  2021年   82篇
  2020年   65篇
  2019年   66篇
  2018年   88篇
  2017年   58篇
  2016年   74篇
  2015年   54篇
  2014年   59篇
  2013年   99篇
  2012年   63篇
  2011年   56篇
  2010年   51篇
  2009年   65篇
  2008年   60篇
  2007年   40篇
  2006年   31篇
  2005年   23篇
  2004年   18篇
  2003年   20篇
  2002年   24篇
  2001年   14篇
  2000年   15篇
  1999年   20篇
  1998年   39篇
  1997年   13篇
  1996年   21篇
  1995年   18篇
  1994年   12篇
  1993年   20篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1959年   4篇
排序方式: 共有1419条查询结果,搜索用时 15 毫秒
1.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   
2.

Accurate prediction of the liquefaction-induced settlement (\({S}_{\mathrm{lc}}\)) is an essential requirement for a good design of buildings resting on liquefiable ground and subjected to seismic shake. However, prediction of the \({S}_{\mathrm{lc}}\) is not straightforward process and it requires advanced soil models and calibrated soil parameters that are not readily available for designers/practitioners. In addition, the available empirical models to estimate the \({S}_{\mathrm{lc}}\) have been developed using either classical regression analysis or multivariate adaptive regression splines and such techniques produce complicated models. Also, these empirical models have been developed utilizing results of numerical modelling. To overcome these limitations, novel model has been developed in this paper utilizing robust regression analysis driven by artificial intelligence called the evolutionary polynomial regression analysis. The new model has been developed using centrifuge results (real laboratory measurements) and can be easily used to accurately estimate the liquefaction induced settlement. The developed model scored a mean absolute error, root mean square error, mean, standard deviation of the predicted to measured values, coefficient of determination, \(a20 - \mathrm{index}\), and EPR coefficient of determination of 2.12 cm, 2.84 cm, 1.06, 0.19, 0.98, 0.77, and 97%, respectively, for the learning data and 1.73 cm, 3.31 cm, 0.99, 0.17, 0.97, 0.75, and 97%, respectively, for the examination data. The developed model has also been used in a parametric study to provide an insight into the sensitivity of the \({S}_{\mathrm{lc}}\) to the foundation width, building height, pressure applied on the foundation, thickness and relative density of the liquefiable layer, and earthquake intensity. The results obtained from the parametric study are reasonable and in agreement with previous studies in the literature. Thus, the developed model can be employed to optimize designs and to reduce design costs as it does not require complicated analyses and/or expensive computational facilities.

  相似文献   
3.
4.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   
5.
Wireless Personal Communications - Distributed computing applications provide concurrent processing and services executed from different systems through a common cloud platform. However, without...  相似文献   
6.
Transition metal oxyhydroxides have been used as promising electrocatalysts for water splitting however, their catalytic activity is restricted due to low surface area and poor conductivity. Herein, we report novel composite FeOOH@ZIF-12/graphene composite as electrocatalyst for water oxidation, whereby ZIF-12 provide extra surface for the FeOOH dispersion whilst graphene act as excellent electron mediator. The composite shows a low overpotential value of 291 mV to attain a current density of 10 mA cm?2 and a low Tafel slope value of 78 mV dec?1. The catalyst offers a maximum current density of 101 mA cm?2, while it gives a turnover frequency (TOF) value of 0.031 s?1 at an overpotential of 291 mV only. The excellent activity and remarkable stability of composite is attributed to highly conductive and porous support.  相似文献   
7.
8.
9.
This work presents a complete bond graph modeling of a hybrid photovoltaic-fuel cell-electrolyzer-battery system. These are multi-physics models that will take into account the influence of temperature on the electrochemical parameters. A bond graph modeling of the electrical dynamics of each source will be introduced. The bond graph models were developed to highlight the multi-physics aspect describing the interaction between hydraulic, thermal, electrochemical, thermodynamic, and electrical fields. This will involve using the most generic modeling approach possible for managing the energy flows of the system while taking into account the viability of the system. Another point treated in this work is to propose. In this work, a new strategy for the power flow management of the studied system has been proposed. This strategy aims to improve the overall efficiency of the studied system by optimizing the decisions made when starting and stopping the fuel cell and the electrolyzer. It was verified that the simulation results of the proposed system, when compared to simulation results presented in the literature, that the hydrogen demand is increased by an average of 8%. The developed management algorithm allows reducing the fuel cell degradation by 87% and the electrolyzer degradation by 65%. As for the operating time of the electrolyzer, an increment of 65% was achieved, thus improving the quality of the produced hydrogen. The Fuel Cell's running time has been decreased by 59%. With the ambition to validate the models proposed and the associated commands, the development of this study gave rise to the creation of an experimental platform. Using this high-performance experimental platform, experimental tests were carried out and the results obtained are compared with those obtained by simulation under the same metrological conditions.  相似文献   
10.
Nahrawy  A. M. El  Moez  A. Abdel  Saad  A. M. 《SILICON》2018,10(5):2117-2122
Silicon - Thin film nanocomposites of sodium silicate (80 SiO2 –20 Na2O)/ tartrazine dye (E102) prepared using sol gel process in acidic system. The change in the physicochemical properties...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号