首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
一般工业技术   2篇
  2004年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We have measured the field dependence of the off-diagonal impedance in the megahertz frequency range for a NiFe-Au-NiFe layered film using a helical microcoil. The film and the coil were deposited by means of radio-frequency sputtering, and a transverse anisotropy in magnetic layers was established by applying a dc magnetic field during the deposition and by postproduction annealing. The film had 5 mm length, 50 /spl mu/m width, and 1.5 /spl mu/m total thickness. The helical microcoil had 23 turns with a 50 /spl mu/m turn width. We applied high-frequency excitation by means of the coil current and measured the induced voltage across the film stripe. This voltage response is directly proportional to the off-diagonal component of the total impedance tensor. We found that the plots of the real and imaginary parts of the off-diagonal impedance, as functions of the applied dc magnetic field, are antisymmetrical with respect to the field direction. The dc bias current through the film plays an important role: without the bias current, the measured signal is very small and irregular. The field antisymmetry demonstrated by the off-diagonal impedance can be utilized in highly sensitive and linear magnetic sensors, and we discuss the principles of operation of such sensors here.  相似文献   
2.
We investigated the magnetic-field behavior of the off-diagonal impedance in Co-based amorphous wires under sinusoidal (50 MHz) and pulsed (5 ns rise time) current excitations. For comparison, we measured the field characteristics of the diagonal impedance as well. In general, when an alternating current is applied to a magnetic wire, the voltage signal is generated not only across the wire but also in a pickup coil wound on it. These voltages are related to the diagonal and off-diagonal impedances, respectively. We demonstrate that these impedances have a different behavior as functions of axial magnetic field: the diagonal impedance is symmetrical, whereas the off-diagonal one is antisymmetrical with a near-linear portion within a certain field interval. For the off-diagonal response, the dc bias current is necessary to eliminate circular domains. In the case of the sinusoidal excitation without a dc bias current, the off-diagonal response is very small and irregular. In contrast, the pulsed excitation, combining both high- and low-frequency harmonics, produces the off-diagonal voltage response without additional biasing. This behavior is ideal for a practical sensor circuit design. We discuss the principles of operation of a linear magnetic sensor based on a complementary metal-oxide-semiconductor transistor circuit.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号