首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   654篇
  免费   19篇
电工技术   24篇
综合类   1篇
化学工业   187篇
金属工艺   19篇
机械仪表   15篇
建筑科学   9篇
能源动力   19篇
轻工业   43篇
水利工程   2篇
无线电   55篇
一般工业技术   121篇
冶金工业   94篇
原子能技术   26篇
自动化技术   58篇
  2023年   5篇
  2022年   2篇
  2021年   11篇
  2020年   9篇
  2019年   14篇
  2018年   11篇
  2017年   17篇
  2016年   15篇
  2015年   9篇
  2014年   22篇
  2013年   37篇
  2012年   32篇
  2011年   36篇
  2010年   30篇
  2009年   26篇
  2008年   32篇
  2007年   26篇
  2006年   27篇
  2005年   19篇
  2004年   17篇
  2003年   18篇
  2002年   18篇
  2001年   12篇
  2000年   8篇
  1999年   14篇
  1998年   38篇
  1997年   23篇
  1996年   18篇
  1995年   18篇
  1994年   15篇
  1993年   10篇
  1992年   10篇
  1991年   8篇
  1990年   6篇
  1989年   7篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   7篇
  1979年   5篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有673条查询结果,搜索用时 93 毫秒
1.
CD22 (Siglec-2) is a B-cell surface inhibitory protein capable of selectively recognising sialylated glycans, thus dampening autoimmune responses against self-antigens. Here we have characterised the dynamic recognition of complex-type N-glycans by human CD22 by means of orthogonal approaches including NMR spectroscopy, computational methods and biophysical assays. We provide new molecular insights into the binding mode of sialoglycans in complex with h-CD22, highlighting the role of the sialic acid galactose moieties in the recognition process, elucidating the conformational behaviour of complex-type N-glycans bound to Siglec-2 and dissecting the formation of CD22 homo-oligomers on the B-cell surface. Our results could enable the development of additional therapeutics capable of modulating the activity of h-CD22 in autoimmune diseases and malignancies derived from B-cells.  相似文献   
2.
This paper reports a deep‐ultraviolet LED (deep‐UV‐LED) package based on silicon MEMS process technology (Si‐PKG). The package consists of a cavity formed by silicon crystalline anisotropic etching, through‐silicon vias (TSVs) filled with electroplated Cu, bonding metals made of electroplated Ni/AuSn and a quartz lid for hermetic sealing. A deep‐UV LED die is directly mounted in the Si‐PKG by AuSn eutectic bonding without a submount. It has advantages in terms of size, heat dissipation, light utilization efficiency, productivity and cost over conventional AlN ceramic packages. We confirmed a light output of 30 mW and effective reflection on Si (111) cavity slopes in the Si‐PKG. Based on simulation, further improvement of the optical output is expected by optimizing DUV‐LED die mount condition.  相似文献   
3.
For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This study evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-NicalonTM Type S SiC fiber, following neutron irradiation at 319 and 629?°C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319?°C, the quasi-ductile fracture behavior of the nonirradiated composite became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. The specimens irradiated at 629?°C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.  相似文献   
4.
SiC/SiC composites are promising structural candidate materials for various nuclear applications over the wide temperature range of 300–1000 °C. Accordingly, irradiation tolerance over this wide temperature range needs to be understood to ensure the performance of these composites. In this study, neutron irradiation effects on dimensional stability and mechanical properties to high doses (11–44 dpa) at intermediate irradiation temperatures (?600 °C) were evaluated for Hi-Nicalon Type-S or Tyranno-SA3 fiber–reinforced SiC matrix composites produced by chemical vapor infiltration. The influence of various fiber/matrix interfaces, such as a 50–120 nm thick pyrolytic carbon (PyC) monolayer interphase and 70–130 nm thick PyC with a subsequent PyC (?20 nm)/SiC (?100 nm) multilayer, was evaluated and compared with the previous results for a thin-layer PyC (?20 nm)/SiC (?100 nm) multilayer interphase. Four-point flexural tests were conducted to evaluate post-irradiation strength, and SEM and TEM were used to investigate microstructure. Regardless of the fiber type, monolayer composites showed considerable reduction of flexural properties after irradiation to 11–12 dpa at 450–500 °C; and neither type showed the deterioration identified at the same dose level at higher temperatures (>750 °C) in a previous study. After further irradiation to 44 dpa at 590–640 °C, the degradation was enhanced compared with conventional multilayer composites with a PyC thickness of ?20 nm. Multilayer composites have shown comparatively good strength retention for irradiation to ?40 dpa, with moderate mechanical property degradation beginning at 70–100 dpa. Irradiation-induced debonding at the F/M interface was found to be the major cause of deterioration of various composites.  相似文献   
5.
β(1,3)-glucans are a component of fungal and plant cell walls. The β-glucan of pathogens is recognized as a non-self-component in the host defense system. Long β-glucan chains are capable of forming a triple helix structure, and the tertiary structure may profoundly affect the interaction with β-glucan-binding proteins. Although the atomic details of β-glucan binding and signaling of cognate receptors remain mostly unclear, X-ray crystallography and NMR analyses have revealed some aspects of β-glucan structure and interaction. Here, we will review three-dimensional (3D) structural characteristics of β-glucans and the modes of interaction with β-glucan-binding proteins.  相似文献   
6.
Water detection is one of the most crucial psychological processes for many animals. However, nobody knows the perception mechanism of water through our tactile sense. In the present study, we found that a characteristic frictional stimulus with large acceleration is one of the cues to differentiate water from water contaminated with thickener. When subjects applied small amounts of water to a glass plate, strong stick-slip phenomena with a friction force of 0.46 ± 0.30 N and a vertical force of 0.57 ± 0.36 N were observed at the skin surface, as shown in previous studies. Surprisingly, periodic shears with acceleration seven times greater than gravitational acceleration occurred during the application process. Finite-element analyses predicted that these strong stimuli could activate tactile receptors: Meissner''s corpuscle and Pacinians. When such stimuli were applied to the fingertips by an ultrasonic vibrator, a water-like tactile texture was perceived by some subjects, even though no liquid was present between the fingertip and the vibrator surface. These findings could potentially be applied in the following areas: materials science, information technology, medical treatment and entertainment.  相似文献   
7.
Various imaging techniques using microbeam have been applied in biology. Secondary ion mass spectrometry (SIMS) is one of the prominent tools for biological imaging; SIMS can provide data on molecular distribution in biological samples smaller than 1 μm. However, conventional SIMS has only low sensitivity for molecular ions; therefore there is a need for beams of more sensitive primary ions. Plasma desorption mass spectrometry (PDMS) is a method using high energy fission fragments from excitation of a 252Cf source, and it allows ionization of large molecules (typically up to 20 kDa) due to the dense electronic excitation. Although PDMS is not in use today because of the development of soft ionization methods, ionization induced by high energy ion collision still remains the only method which combines high spatial resolution and sensitive detection of large molecules. In this work, the secondary ion yield of amino acid and phospholipid was measured for 6 MeV Cu4+. The yields were compared to bismuth cluster ions, which achieve relatively high yield. It was confirmed that the swift heavy ion has a couple of hundred times higher yield for large molecules than bismuth cluster ions.  相似文献   
8.
High tensile strength fibers of poly[(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyhexanoate] [P(3HB‐co‐3HH)], a type of microbial polyesters, were processed by one‐step and two‐step cold‐drawn method with intermediate annealing. Thermal degradation behaviors were characterized by differential scanning calorimeter and gel permeation chromatography measurements. Thermal analyses were revealed that molecular weights decreased drastically within melting time at a few minute. One‐step cold‐drawn fiber with drawing ratio of 10 showed tensile strength of 281 MPa, while tensile strength of as‐spun fiber was 78 MPa. When two‐step drawing was applied for P(3HB‐co‐3HH) fibers, the tensile strength was led to 420 MPa. Furthermore, the optimization of intermediate annealing condition leads to enhance the tensile strength at 552 MPa of P(3HB‐co‐3HH) fiber. Wide‐angel X‐ray diffraction measurements of these fibers suggest that the fibers with high tensile strength include much amount of the planer‐zigzag conformation (β‐form) as molecular conformation together with 21 helix conformation (α‐form). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41258.  相似文献   
9.
In glacial acetic acid, phthalanilic acid and its monosubstituents are known to be converted to the corresponding phthalimides in relatively good yields. In this study, we computationally investigated the experimentally proposed two-step (addition-elimination or cyclization-dehydration) mechanism at the second-order Møller-Plesset perturbation (MP2) level of theory for the unsubstituted phthalanilic acid, with an explicit acetic acid molecule included in the calculations. In the first step, a gem-diol tetrahedral intermediate is formed by the nucleophilic attack of the amide nitrogen. The second step is dehydration of the intermediate to give N-phenylphthalimide. In agreement with experimental findings, the second step has been shown to be rate-determining. Most importantly, both of the steps are catalyzed by an acetic acid molecule, which acts both as proton donor and acceptor. The present findings, along with those from our previous studies, suggest that acetic acid and other carboxylic acids (in their undissociated forms) can catalyze intramolecular nucleophilic attacks by amide nitrogens and breakdown of the resulting tetrahedral intermediates, acting simultaneously as proton donor and acceptor. In other words, double proton transfers involving a carboxylic acid molecule can be part of an extensive bond reorganization process from cyclic hydrogen-bonded complexes.  相似文献   
10.
The study aims to evaluate the potential of GHG (greenhouse gas) reductions by installing an anaerobic digester in a wastewater treatment facility in Southeast Asia. Then the break-even point of additional investment to reduce GHG is obtained by exchanging carbon price as emissions credits. In the project scenario, the wastewater treatment system has the digester, where methane (biogas) is produced and recovered. Compared with the baseline scenario, the biogas has calorific value to produce heat and electri...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号