首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17544篇
  免费   1562篇
  国内免费   684篇
电工技术   1030篇
技术理论   3篇
综合类   1162篇
化学工业   3140篇
金属工艺   944篇
机械仪表   1094篇
建筑科学   1465篇
矿业工程   578篇
能源动力   457篇
轻工业   1166篇
水利工程   314篇
石油天然气   1008篇
武器工业   103篇
无线电   2006篇
一般工业技术   2235篇
冶金工业   817篇
原子能技术   304篇
自动化技术   1964篇
  2024年   41篇
  2023年   355篇
  2022年   449篇
  2021年   655篇
  2020年   538篇
  2019年   518篇
  2018年   512篇
  2017年   576篇
  2016年   470篇
  2015年   673篇
  2014年   838篇
  2013年   994篇
  2012年   1043篇
  2011年   1066篇
  2010年   940篇
  2009年   1011篇
  2008年   920篇
  2007年   906篇
  2006年   971篇
  2005年   797篇
  2004年   604篇
  2003年   565篇
  2002年   569篇
  2001年   534篇
  2000年   433篇
  1999年   517篇
  1998年   371篇
  1997年   352篇
  1996年   347篇
  1995年   291篇
  1994年   260篇
  1993年   160篇
  1992年   131篇
  1991年   91篇
  1990年   72篇
  1989年   66篇
  1988年   53篇
  1987年   31篇
  1986年   17篇
  1985年   15篇
  1984年   7篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   10篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the absorption of heparin after oral administration, in which heparin was compounded with phospholipids to achieve better fat solubility in the form of heparin-phospholipid (HEP-Pc) complex. HEP-Pc complex was prepared using the solvent evaporation method, which increased the solubility of heparin in n-octanol. The successful preparation of HEP-Pc complex was confirmed by differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, NMR, and SEM. A heparin lipid microemulsion (HEP-LM) was prepared by high-pressure homogenization and characterized. HEP-LM can enhance the absorption of heparin after oral administration, significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) in mice, and reduce fibrinogen (FIB) content. All these outcomes indicate that HEP-LM has great potential as an oral heparin formulation.  相似文献   
3.
All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI~-and FSI~-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI~-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm~(-2),while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g~(-1),with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.  相似文献   
4.
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production.  相似文献   
5.
High purity AlN fiber is a promising thermal conductive material. In this work, AlN fibers were prepared using solution blow spinning followed by nitridation under N2 or NH3 atmosphere. Soluble polymer, such as polyaluminoxane, and allyl-functional novolac resin were adopted as raw materials to form homogeneous distribution of Al2O3 and C nanoparticles within the fibers, which could inhibit the growth of alumina crystal and promote their nitridation process. The effect of nitriding atmosphere on the fiber morphology was investigated. XRD results showed that complete nitridation was achieved at 1300 °C in the NH3 or at 1500 °C in the N2 atmosphere. Hollowed fiber structure was observed when fiber was nitrided in N2 at high temperature, which was caused by gaseous Al gas diffusion, and this phenomenon was eliminated in NH3 atmosphere. The nitridation mechanisms in different atmosphere were analyzed in detail. It was demonstrated that the nitridation of Al2O3 fibers in the NH3 atmosphere offered the favored AlN morphology and chemical quality. Flexible AlN fiber with O content of 0.7 wt% was achieved after nitriding in NH3 at 1400 °C. The high quality AlN can be used in thermal conductive composite materials.  相似文献   
6.
Fluorescent detection is a new spectroscopic measurement for ions sensing due to the advantages of real-time determination with high selectivity, accuracy, and low cost. However, chemosensors based on fluorescent detection are usually determined by absolute intensity from a monochromatic emission signal, which is easy to be fluctuated by the external environment, especially for Fe3+ detection in complex fluids. Herein, we rationally design a dual-emission Eu3+: CDs@ZIF-8 to construct a ratiometric fluorescent sensor with self-calibrating ability for Fe3+ determination. High efficient carbon dots (CDs) are embedded in europium ions (Eu3+)-doped MOF by simple stirring preparation at room temperature. The label-free ratiometric fluorescent probe (ICDs@ZIF-8/IEu) exhibits simultaneous blue and red emission under the same excitation at 365 nm. Remarkably, Eu3+: CDs@ZIF-8 displays the superiority of high selectivity to Fe3+, which shows ratiometric fluorescence characteristics (I0/I) in a range of 0-6 μmol\L with a low limit of detection (LOD) of 0.897 μmol\L. Besides, the CDs-MOF nanocomposite holds good aqueous dispersibility and low cytotoxicity, which shows great potential applications in medical aid including biological detection and clinical diagnosis.  相似文献   
7.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
8.
The transparent Er3+-Yb3+-doped fluoro-aluminosilicate glass-ceramic (GC) was prepared by melt-quenching. The crystal phase, morphology, and up-conversion (UC) luminescence of as-produced GC were characterized by X-ray diffraction, scanning electron microscopy, and fluorescence spectrophotometry, respectively. The results show that BaYF5 nanocrystals were uniformly distributed in the glass matrix of the as-produced GC. When the as-produced GC was subjected to heat treatment, the crystallinity was increased, but the crystal identity remains unchanged. Such heat-treatment doubled the intensity of the UC luminescence, and this enhancement was ascribed to the increased incorporation of both Er3+ and Yb3+ ions into the lower phonon energy environment of BaYF5 nanocrystals. Furthermore, the heat-treated GC was stable against further crystallization, and consequently its UC luminescence was stable at the application temperature. The heat-treated GC was found to possess an outstanding temperature-sensing capability.  相似文献   
9.
10.
Yang  Ning  Wang  Zhelong  Zhao  Hongyu  Shi  Xin  Qiu  Sen 《Multimedia Tools and Applications》2022,81(13):17595-17614
Multimedia Tools and Applications - Human-human interactions recognition has high potential to have a big impact on enabling robots being able to interact with people. Recently, body sensor...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号