首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38922篇
  免费   3614篇
  国内免费   1658篇
电工技术   2192篇
技术理论   6篇
综合类   2811篇
化学工业   6613篇
金属工艺   2337篇
机械仪表   2382篇
建筑科学   3047篇
矿业工程   1248篇
能源动力   1029篇
轻工业   3351篇
水利工程   633篇
石油天然气   2337篇
武器工业   296篇
无线电   4306篇
一般工业技术   4475篇
冶金工业   1904篇
原子能技术   369篇
自动化技术   4858篇
  2024年   105篇
  2023年   773篇
  2022年   1149篇
  2021年   1791篇
  2020年   1370篇
  2019年   1111篇
  2018年   1263篇
  2017年   1322篇
  2016年   1080篇
  2015年   1579篇
  2014年   1965篇
  2013年   2301篇
  2012年   2595篇
  2011年   2614篇
  2010年   2299篇
  2009年   2183篇
  2008年   2101篇
  2007年   1956篇
  2006年   1981篇
  2005年   1668篇
  2004年   1199篇
  2003年   1370篇
  2002年   1638篇
  2001年   1362篇
  2000年   992篇
  1999年   956篇
  1998年   642篇
  1997年   549篇
  1996年   506篇
  1995年   434篇
  1994年   318篇
  1993年   231篇
  1992年   186篇
  1991年   137篇
  1990年   125篇
  1989年   93篇
  1988年   75篇
  1987年   33篇
  1986年   32篇
  1985年   19篇
  1984年   20篇
  1983年   7篇
  1982年   19篇
  1981年   12篇
  1980年   15篇
  1979年   4篇
  1977年   2篇
  1973年   1篇
  1959年   2篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   
2.
It is urgently necessary to seek more simple and effective methods to construct superhydrophobic metal surfaces to improve the corrosion resistance and antifouling performance. Herein, a facile method for fabricating superhydrophobic aluminum alloy surface is developed via boiling water treatment and stearic acid modification. It is noteworthy that no prepolishing on aluminum alloy is required and no caustic reagents and typical equipments are used during the preparation procedure. Therefore, the fabrication method is quite a simple and environment-friendly technique. Both micro- and nano-scaled binary structure forms at the resultant aluminum alloy surface while long alkyl chains are grafted onto the rough aluminum alloy surface chemically. Consequently, the resultant aluminum alloy exhibits outstanding superhydrophobicity. More importantly, the superhydrophobicity has excellent universality, diversity, stability, excellent corrosion resistance, and antifouling performance. The facile preparation, excellent superhydrophobic durability, and outstanding performance are quite in favor of the practical application.  相似文献   
3.
The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.  相似文献   
4.
Succinic acid is an important synthetic monomer but it is difficult to use it as a precursor for synthesizing high molecular weight polyamide, due to its tendency to perform intra-cyclization reaction at high temperature. In order to solve this problem, in this paper, the direct solid-state polymerization (DSSP) method with the initial reactant, nylon salt which was composed of 1, 5-diaminopentane, succinic acid, and terephthalic acid, was applied to synthesize the bio-based copolyamide PA 5T/54. In comparison with the conventional melting polymerization method, the DSSP method can prevent the cyclization reaction of succinic acid effectively due to the lower reacting temperature as well as the restriction effect of the nylon salt. As a result, the product fabricated by DSSP method has higher molecular weight and much lighter color from red to white. Therefore, the DSSP method is advantageous for the synthesis of the polymers or copolymers composed of the succinic acid as the monomer. Furthermore, the polymerization mechanism proposed in this work can serve as a guidance for the design of the molecular structure and control of the polymerization process.  相似文献   
5.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
6.
Carbon black (CB) filled elastomers are structurally complex materials that offer unique properties at different length scales. They have tremendous potential applications in a number of fields including the automotive and aerospace industries and for designing innovative smart materials such as artificial muscles but their applications remain limited primarily due to inadequate understanding of their unique mechanical properties. Here, using the Berkovich technique to probe the surface mechanical properties at different scales the nanoindentation response of a series of composites made by homogeneously dispersed CB nanoparticles inside a semicrystalline copolymer matrix has been explored. While the measured loading part of the force–displacement curves is well described by Meyer's empirical power relation, the inverted methodology (IM) approach to deal with the unloading part has been considered and its outcome has been compared with that obtained from the standard Oliver–Pharr's method. The results were consistent with the observed increase of hardness when the applied displacement decreases for all composite samples over a large range of CB volume fraction. Zhang and Xu's model is demonstrated to produce experimentally consistent explanation of this indentation size effect. X-ray photoelectron spectroscopy (XPS) spectra also show composition gradients with depth up to 100 nm. Furthermore, the effect of CB content, surface features, and length scale-dependent deformation on the hardness–displacement behavior have been considered. These findings highlight the possibility of attaining a diverse set of mechanical properties by a better understanding of the nanoindentation response of CB filled elastomers which can be useful for material selection and design improvements in a number of practical applications.  相似文献   
7.
8.
Numbers of patients with coronavirus disease 2019 (COVID-19) have increased rapidly worldwide. Plasma levels of full-length galectin-9 (FL-Gal9) and osteopontin (FL-OPN) as well as their truncated forms (Tr-Gal9, Ud-OPN, respectively), are representative inflammatory biomarkers. Here, we measured FL-Gal9, FL-OPN, Tr-Gal9, and Ud-OPN in 94 plasma samples obtained from 23 COVID-19-infected patients with mild clinical symptoms (CV), 25 COVID-19 patients associated with pneumonia (CP), and 14 patients with bacterial infection (ID). The four proteins were significantly elevated in the CP group when compared with healthy individuals. ROC analysis between the CV and CP groups showed that C-reactive protein had the highest ability to differentiate, followed by Tr-Gal9 and ferritin. Spearman’s correlation analysis showed that Tr-Gal9 and Ud-OPN but not FL-Gal9 and FL-OPN, had a significant association with laboratory markers for lung function, inflammation, coagulopathy, and kidney function in CP patients. CP patients treated with tocilizumab had reduced levels of FL-Gal9, Tr-Gal9, and Ud-OPN. It was suggested that OPN is cleaved by interleukin-6-dependent proteases. These findings suggest that the cleaved forms of OPN and galectin-9 can be used to monitor the severity of pathological inflammation and the therapeutic effects of tocilizumab in CP patients.  相似文献   
9.
In order to enhance the photocatalytic activity of TiO2 under visible light, Ag nanoparticles were introduced into tridoped B–C–N–TiO2 (TT) catalyst by photoreduction deposition. Ag/B–C–N–TiO2 (ATT) catalysts with the functions of reducing band gap and carrier recombination were prepared. At the same time, the effect of the amount of Ag on the photocatalytic performance of ATT catalyst was investigated. Through XRD, XPS, PL and other characterization methods, the (211)/(101)/Ag interface heterojunction mechanism similar to the traditional Z-scheme heterojunction was proposed. The intervention of Ag nanoparticles changed the P–N interface heterojunction between (211)/(101) to the (211)/(101)/Ag Z-scheme interface heterojunction. The results show that ATT catalyst exhibits the highest photocatalytic activity when the molar amount of Ag is 0.005% with the MB degradation rate of the ATT catalyst (0.01707 min?1), which is 14.59 times of TiO2 (0.00117 min?1) and 2.02 times of TT (0.00847 min?1). In addition, the four cycles efficiencies of ATT for MB degradation were all above 94.00%.This study reveals the possibility of construction of Z-scheme heterojunctions between precious metal nanoparticles and different interfaces of TiO2, and provides a reference for the construction of Z-scheme interface heterojunctions.  相似文献   
10.
Bone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D-printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on-demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号